Visualization of relative cochlear motions using high resolution optical coherence microscopy

IF 2.5 2区 医学 Q1 AUDIOLOGY & SPEECH-LANGUAGE PATHOLOGY
Scott Page , Roozbeh Ghaffari , Dennis M. Freeman
{"title":"Visualization of relative cochlear motions using high resolution optical coherence microscopy","authors":"Scott Page ,&nbsp;Roozbeh Ghaffari ,&nbsp;Dennis M. Freeman","doi":"10.1016/j.heares.2025.109311","DOIUrl":null,"url":null,"abstract":"<div><div>Despite enormous progress in understanding the electro-mechanical properties of outer hair cells and the molecular basis of these properties, less is known about the relative motion of the organ of Corti and accessory structures that shape cochlear responses to acoustic stimulation. Here, we characterize absolute and relative motions of apical regions of the excised gerbil cochleae using a custom Doppler optical coherence microscopy (DOCM) system. Responses to sinusoidal stimuli show nanometer-scale motions of the tectorial membrane (TM), organ of Corti structures (e.g. outer hair cells, pillar cells), and basilar membrane in the apical turn of the cochlea. Motion-magnified analysis reveals rotations about the inner pillar cells at nearly constant phase, whereas TM motion lags that of the underlying cells by as much as 0.1 radians. Our DOCM results demonstrate a new technique capable of concurrent high resolution anatomical imaging and nanometer-scale motion analysis of cellular and acellular structures in response to stapes stimulation, enabling investigations of relative cochlear motions and feedback mechanisms.</div></div>","PeriodicalId":12881,"journal":{"name":"Hearing Research","volume":"464 ","pages":"Article 109311"},"PeriodicalIF":2.5000,"publicationDate":"2025-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Hearing Research","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0378595525001297","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AUDIOLOGY & SPEECH-LANGUAGE PATHOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Despite enormous progress in understanding the electro-mechanical properties of outer hair cells and the molecular basis of these properties, less is known about the relative motion of the organ of Corti and accessory structures that shape cochlear responses to acoustic stimulation. Here, we characterize absolute and relative motions of apical regions of the excised gerbil cochleae using a custom Doppler optical coherence microscopy (DOCM) system. Responses to sinusoidal stimuli show nanometer-scale motions of the tectorial membrane (TM), organ of Corti structures (e.g. outer hair cells, pillar cells), and basilar membrane in the apical turn of the cochlea. Motion-magnified analysis reveals rotations about the inner pillar cells at nearly constant phase, whereas TM motion lags that of the underlying cells by as much as 0.1 radians. Our DOCM results demonstrate a new technique capable of concurrent high resolution anatomical imaging and nanometer-scale motion analysis of cellular and acellular structures in response to stapes stimulation, enabling investigations of relative cochlear motions and feedback mechanisms.
利用高分辨率光学相干显微镜可视化耳蜗相对运动
尽管在理解外毛细胞的机电特性和这些特性的分子基础方面取得了巨大的进展,但对Corti器官和形成耳蜗对声刺激反应的附属结构的相对运动知之甚少。在这里,我们使用定制的多普勒光学相干显微镜(DOCM)系统表征切除的沙鼠耳蜗顶端区域的绝对和相对运动。对正弦刺激的反应显示耳蜗顶部的毡膜(TM)、皮质结构器官(如外毛细胞、柱细胞)和基底膜的纳米级运动。运动放大分析显示,内柱细胞的旋转几乎是恒定的相位,而TM的运动滞后于底层细胞的运动多达0.1弧度。我们的DOCM结果展示了一种新的技术,能够同时进行高分辨率解剖成像和纳米尺度的细胞和非细胞结构在镫骨刺激下的运动分析,从而研究耳蜗的相关运动和反馈机制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Hearing Research
Hearing Research 医学-耳鼻喉科学
CiteScore
5.30
自引率
14.30%
发文量
163
审稿时长
75 days
期刊介绍: The aim of the journal is to provide a forum for papers concerned with basic peripheral and central auditory mechanisms. Emphasis is on experimental and clinical studies, but theoretical and methodological papers will also be considered. The journal publishes original research papers, review and mini- review articles, rapid communications, method/protocol and perspective articles. Papers submitted should deal with auditory anatomy, physiology, psychophysics, imaging, modeling and behavioural studies in animals and humans, as well as hearing aids and cochlear implants. Papers dealing with the vestibular system are also considered for publication. Papers on comparative aspects of hearing and on effects of drugs and environmental contaminants on hearing function will also be considered. Clinical papers will be accepted when they contribute to the understanding of normal and pathological hearing functions.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信