{"title":"Actin in mitochondrial regulation and mechanometabolic crosstalk","authors":"Peng Shi , Yuhan Zhang , Congying Wu","doi":"10.1016/j.ceb.2025.102539","DOIUrl":null,"url":null,"abstract":"<div><div>Mitochondria undergo dynamic adaptations to cellular energy demands, changing morphology and function, through active interactions with other cellular organelles and the cytoskeletons. With advances in light and electron microscopy, actin probes for live-cell imaging, as well as proximity labeling, subtle and transient actin structures associated with mitochondria have been resolved and examined, which opened a new era for the understanding of architectural and mechanical regulation of organelles and metabolism. Here, we first review the recent findings that elucidate the actin–mitochondrion interactions in regulating mitochondrial dynamics (including fission, fusion and trafficking), and cristae architecture. Further, we discuss the functional consequences accompanying these morphological changes, which link cellular metabolism to the cytoskeleton and mechanotransduction through direct or indirect organelle control. Moreover, we summarize the avant-garde techniques for probing mitochondrion-associated actin, including new ways to visualize mitochondria–actin interaction in the cytosol and within the mitochondria, methods to identify the molecular components mediating actin–mitochondria crosstalk, and techniques for reconstructing the 3D ultrastructure of actin–mitochondrion interaction. Finally, we conclude pressing issues in this exciting field, calling for interdisciplinary efforts in examine actin–mitochondrion interactions at micro and macro levels. The dynamics and structural integrity of mitochondria are essential for energy metabolism and signal transduction, while their abnormalities lead to mitochondrial dysfunction and severe disease. This review aims to provide a comprehensive perspective on the emerging roles of the actin cytoskeleton in shaping mitochondrial morphology, structure, and functions, providing new angles to understand mitochondria-related diseases.</div></div>","PeriodicalId":50608,"journal":{"name":"Current Opinion in Cell Biology","volume":"95 ","pages":"Article 102539"},"PeriodicalIF":6.0000,"publicationDate":"2025-05-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Opinion in Cell Biology","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0955067425000778","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Mitochondria undergo dynamic adaptations to cellular energy demands, changing morphology and function, through active interactions with other cellular organelles and the cytoskeletons. With advances in light and electron microscopy, actin probes for live-cell imaging, as well as proximity labeling, subtle and transient actin structures associated with mitochondria have been resolved and examined, which opened a new era for the understanding of architectural and mechanical regulation of organelles and metabolism. Here, we first review the recent findings that elucidate the actin–mitochondrion interactions in regulating mitochondrial dynamics (including fission, fusion and trafficking), and cristae architecture. Further, we discuss the functional consequences accompanying these morphological changes, which link cellular metabolism to the cytoskeleton and mechanotransduction through direct or indirect organelle control. Moreover, we summarize the avant-garde techniques for probing mitochondrion-associated actin, including new ways to visualize mitochondria–actin interaction in the cytosol and within the mitochondria, methods to identify the molecular components mediating actin–mitochondria crosstalk, and techniques for reconstructing the 3D ultrastructure of actin–mitochondrion interaction. Finally, we conclude pressing issues in this exciting field, calling for interdisciplinary efforts in examine actin–mitochondrion interactions at micro and macro levels. The dynamics and structural integrity of mitochondria are essential for energy metabolism and signal transduction, while their abnormalities lead to mitochondrial dysfunction and severe disease. This review aims to provide a comprehensive perspective on the emerging roles of the actin cytoskeleton in shaping mitochondrial morphology, structure, and functions, providing new angles to understand mitochondria-related diseases.
期刊介绍:
Current Opinion in Cell Biology (COCEBI) is a highly respected journal that specializes in publishing authoritative, comprehensive, and systematic reviews in the field of cell biology. The journal's primary aim is to provide a clear and readable synthesis of the latest advances in cell biology, helping specialists stay current with the rapidly evolving field. Expert authors contribute to the journal by annotating and highlighting the most significant papers from the extensive body of research published annually, offering valuable insights and saving time for readers by distilling key findings.
COCEBI is part of the Current Opinion and Research (CO+RE) suite of journals, which leverages the legacy of editorial excellence, high impact, and global reach to ensure that the journal is a widely read resource integral to scientists' workflow. It is published by Elsevier, a publisher known for its commitment to excellence in scientific publishing and the communication of reproducible biomedical research aimed at improving human health. The journal's content is designed to be an invaluable resource for a diverse audience, including researchers, lecturers, teachers, professionals, policymakers, and students.