A synergistic multi-energy system for carbon-neutral container ships via green methanol-biomass hybridization(GMB-CCHP)

IF 9 1区 工程技术 Q1 ENERGY & FUELS
Yibai Wang , Chutong Zhang , Yuanyuan Shi , Peng Huang , Lei Shen , Hui Huang , Baolian Liu , Qiuchan Bai , Jie Ji
{"title":"A synergistic multi-energy system for carbon-neutral container ships via green methanol-biomass hybridization(GMB-CCHP)","authors":"Yibai Wang ,&nbsp;Chutong Zhang ,&nbsp;Yuanyuan Shi ,&nbsp;Peng Huang ,&nbsp;Lei Shen ,&nbsp;Hui Huang ,&nbsp;Baolian Liu ,&nbsp;Qiuchan Bai ,&nbsp;Jie Ji","doi":"10.1016/j.energy.2025.136767","DOIUrl":null,"url":null,"abstract":"<div><div>The decarbonization of maritime transport demands innovative energy systems that reconcile operational efficiency with stringent emission regulations. This study presents GMB-CCHP (Green Methanol-Biomass Coupled CCHP System), a synergistic multi-energy framework designed for carbon-neutral container ships. The system integrates green methanol combustion, biomass boilers, solar photovoltaics, wind turbines, and battery storage, governed by an intelligent energy management system (IEMS) for real-time power allocation. Through multi-objective optimization, the GMB-CCHP achieves remarkable adaptability across diverse operational scenarios. Under baseline navigation for a large container ship (comparable to a Maersk Triple-E class vessel), the system attains 85 % efficiency with 8800-ton carbon emissions and CNY 8.0678 million annual costs, prioritizing propulsion (60 % of 950 kW total load).Extreme conditions—high-temperature (20 % cooling load, 1100 kW) and low-temperature (15 % heating load, 1050 kW)—demonstrate resilience, maintaining 82–83 % efficiency while stabilizing costs.Crucially, optimal configurations (8 MW renewable capacity, 6.5 kton biomass fuel) yield peak efficiency (1147.32 %), which is significantly higher than that of conventional LNG/diesel systems, and minimal emissions (8.8 kton), outperforming conventional LNG/diesel systems by 23–31 % in carbon intensity. The IEMS-driven dynamic load balancing reduces energy waste by 15–26 % compared to static CCHP models, validating the system's capacity to harmonize cargo capacity expansion with emission constraints. By unifying lifecycle carbon reduction (37.2 % lower than IMO 2050 benchmarks) and economic viability (ROI &lt;6.5 years), GMB-CCHP establishes a replicable paradigm for zero-emission shipping, advancing the industry's alignment with Paris Agreement targets.</div></div>","PeriodicalId":11647,"journal":{"name":"Energy","volume":"329 ","pages":"Article 136767"},"PeriodicalIF":9.0000,"publicationDate":"2025-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0360544225024090","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

The decarbonization of maritime transport demands innovative energy systems that reconcile operational efficiency with stringent emission regulations. This study presents GMB-CCHP (Green Methanol-Biomass Coupled CCHP System), a synergistic multi-energy framework designed for carbon-neutral container ships. The system integrates green methanol combustion, biomass boilers, solar photovoltaics, wind turbines, and battery storage, governed by an intelligent energy management system (IEMS) for real-time power allocation. Through multi-objective optimization, the GMB-CCHP achieves remarkable adaptability across diverse operational scenarios. Under baseline navigation for a large container ship (comparable to a Maersk Triple-E class vessel), the system attains 85 % efficiency with 8800-ton carbon emissions and CNY 8.0678 million annual costs, prioritizing propulsion (60 % of 950 kW total load).Extreme conditions—high-temperature (20 % cooling load, 1100 kW) and low-temperature (15 % heating load, 1050 kW)—demonstrate resilience, maintaining 82–83 % efficiency while stabilizing costs.Crucially, optimal configurations (8 MW renewable capacity, 6.5 kton biomass fuel) yield peak efficiency (1147.32 %), which is significantly higher than that of conventional LNG/diesel systems, and minimal emissions (8.8 kton), outperforming conventional LNG/diesel systems by 23–31 % in carbon intensity. The IEMS-driven dynamic load balancing reduces energy waste by 15–26 % compared to static CCHP models, validating the system's capacity to harmonize cargo capacity expansion with emission constraints. By unifying lifecycle carbon reduction (37.2 % lower than IMO 2050 benchmarks) and economic viability (ROI <6.5 years), GMB-CCHP establishes a replicable paradigm for zero-emission shipping, advancing the industry's alignment with Paris Agreement targets.
基于绿色甲醇-生物质混合(GMB-CCHP)的碳中性集装箱船协同多能系统
海上运输的脱碳需要创新的能源系统,以协调运营效率和严格的排放法规。本研究提出了GMB-CCHP(绿色甲醇-生物质耦合CCHP系统),这是一种为碳中性集装箱船设计的协同多能框架。该系统集成了绿色甲醇燃烧、生物质锅炉、太阳能光伏发电、风力涡轮机和电池存储,由智能能源管理系统(IEMS)控制,用于实时电力分配。通过多目标优化,GMB-CCHP在多种运行场景下实现了出色的适应性。在大型集装箱船(相当于Maersk的3e级船)的基线航行中,该系统的效率达到85%,碳排放量为8800吨,年成本为806.78万元人民币,优先考虑推进(950千瓦总负载的60%)。极端条件——高温(20%冷负荷,1100千瓦)和低温(15%热负荷,1050千瓦)——显示出弹性,在稳定成本的同时保持82 - 83%的效率。最重要的是,最优配置(8兆瓦可再生能源容量,6.5千吨生物质燃料)产生的峰值效率(1147.32%)显著高于传统的LNG/柴油系统,排放量最小(8.8千吨),碳强度比传统的LNG/柴油系统高出23 - 31%。与静态CCHP模型相比,iems驱动的动态负载平衡减少了15 - 26%的能源浪费,验证了系统在协调货运能力扩张和排放限制方面的能力。通过统一生命周期碳减排(比IMO 2050年基准低37.2%)和经济可行性(投资回报率6.5年),GMB-CCHP为零排放航运建立了一个可复制的范例,促进了该行业与《巴黎协定》目标的一致。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Energy
Energy 工程技术-能源与燃料
CiteScore
15.30
自引率
14.40%
发文量
0
审稿时长
14.2 weeks
期刊介绍: Energy is a multidisciplinary, international journal that publishes research and analysis in the field of energy engineering. Our aim is to become a leading peer-reviewed platform and a trusted source of information for energy-related topics. The journal covers a range of areas including mechanical engineering, thermal sciences, and energy analysis. We are particularly interested in research on energy modelling, prediction, integrated energy systems, planning, and management. Additionally, we welcome papers on energy conservation, efficiency, biomass and bioenergy, renewable energy, electricity supply and demand, energy storage, buildings, and economic and policy issues. These topics should align with our broader multidisciplinary focus.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信