{"title":"Dynamic stochastic optimization for sustainability and management of overconsumption","authors":"Rosella Castellano , Roy Cerqueti","doi":"10.1016/j.cnsns.2025.108960","DOIUrl":null,"url":null,"abstract":"<div><div>This paper deals with an intergenerational utility maximization problem for consuming a naturally exhaustible resource. In this context, we are at odds with the unfair standard procedure of applying a time-dependent factor for discounting the utility and introducing a suitable function for penalizing overconsumption. A finite-time horizon dynamic stochastic optimization problem is presented to achieve the desired target. We provide a closed-form solution to the problem which does not lead forcefully to the classical golden rule outcome of not consuming now to save the future. The theoretical findings are validated through extensive numerical experiments, with a parameter set selected based on empirical data. Such experiments highlight that optimal consumption depends strongly on the natural resource regeneration rate and the initial value of the stock.</div></div>","PeriodicalId":50658,"journal":{"name":"Communications in Nonlinear Science and Numerical Simulation","volume":"149 ","pages":"Article 108960"},"PeriodicalIF":3.4000,"publicationDate":"2025-05-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications in Nonlinear Science and Numerical Simulation","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1007570425003715","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
This paper deals with an intergenerational utility maximization problem for consuming a naturally exhaustible resource. In this context, we are at odds with the unfair standard procedure of applying a time-dependent factor for discounting the utility and introducing a suitable function for penalizing overconsumption. A finite-time horizon dynamic stochastic optimization problem is presented to achieve the desired target. We provide a closed-form solution to the problem which does not lead forcefully to the classical golden rule outcome of not consuming now to save the future. The theoretical findings are validated through extensive numerical experiments, with a parameter set selected based on empirical data. Such experiments highlight that optimal consumption depends strongly on the natural resource regeneration rate and the initial value of the stock.
期刊介绍:
The journal publishes original research findings on experimental observation, mathematical modeling, theoretical analysis and numerical simulation, for more accurate description, better prediction or novel application, of nonlinear phenomena in science and engineering. It offers a venue for researchers to make rapid exchange of ideas and techniques in nonlinear science and complexity.
The submission of manuscripts with cross-disciplinary approaches in nonlinear science and complexity is particularly encouraged.
Topics of interest:
Nonlinear differential or delay equations, Lie group analysis and asymptotic methods, Discontinuous systems, Fractals, Fractional calculus and dynamics, Nonlinear effects in quantum mechanics, Nonlinear stochastic processes, Experimental nonlinear science, Time-series and signal analysis, Computational methods and simulations in nonlinear science and engineering, Control of dynamical systems, Synchronization, Lyapunov analysis, High-dimensional chaos and turbulence, Chaos in Hamiltonian systems, Integrable systems and solitons, Collective behavior in many-body systems, Biological physics and networks, Nonlinear mechanical systems, Complex systems and complexity.
No length limitation for contributions is set, but only concisely written manuscripts are published. Brief papers are published on the basis of Rapid Communications. Discussions of previously published papers are welcome.