FEM for 1D-problems involving the logarithmic Laplacian: Error estimates and numerical implementation

IF 2.9 2区 数学 Q1 MATHEMATICS, APPLIED
Víctor Hernández-Santamaría , Sven Jarohs , Alberto Saldaña , Leonard Sinsch
{"title":"FEM for 1D-problems involving the logarithmic Laplacian: Error estimates and numerical implementation","authors":"Víctor Hernández-Santamaría ,&nbsp;Sven Jarohs ,&nbsp;Alberto Saldaña ,&nbsp;Leonard Sinsch","doi":"10.1016/j.camwa.2025.05.013","DOIUrl":null,"url":null,"abstract":"<div><div>We present the numerical analysis of a finite element method (FEM) for one-dimensional Dirichlet problems involving the logarithmic Laplacian (the pseudo-differential operator that appears as a first-order expansion of the fractional Laplacian as the exponent <span><math><mi>s</mi><mo>→</mo><msup><mrow><mn>0</mn></mrow><mrow><mo>+</mo></mrow></msup></math></span>). Our analysis exhibits new phenomena in this setting; in particular, using recently obtained regularity results, we prove rigorous error estimates and provide a logarithmic order of convergence in the energy norm using suitable <em>log</em>-weighted spaces. Moreover, we show that the stiffness matrix of logarithmic problems can be obtained as the derivative of the fractional stiffness matrix evaluated at <span><math><mi>s</mi><mo>=</mo><mn>0</mn></math></span>. Lastly, we investigate the relationship between the discrete eigenvalue problem and its convergence to the continuous one.</div></div>","PeriodicalId":55218,"journal":{"name":"Computers & Mathematics with Applications","volume":"192 ","pages":"Pages 189-211"},"PeriodicalIF":2.9000,"publicationDate":"2025-05-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & Mathematics with Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0898122125002093","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

We present the numerical analysis of a finite element method (FEM) for one-dimensional Dirichlet problems involving the logarithmic Laplacian (the pseudo-differential operator that appears as a first-order expansion of the fractional Laplacian as the exponent s0+). Our analysis exhibits new phenomena in this setting; in particular, using recently obtained regularity results, we prove rigorous error estimates and provide a logarithmic order of convergence in the energy norm using suitable log-weighted spaces. Moreover, we show that the stiffness matrix of logarithmic problems can be obtained as the derivative of the fractional stiffness matrix evaluated at s=0. Lastly, we investigate the relationship between the discrete eigenvalue problem and its convergence to the continuous one.
涉及对数拉普拉斯算子的一维问题的有限元方法:误差估计和数值实现
本文给出了涉及对数拉普拉斯算子的一维Dirichlet问题的有限元数值分析(伪微分算子表现为分数拉普拉斯算子的一阶展开式,其指数为s→0+)。我们的分析在这种情况下展示了新的现象;特别是,利用最近获得的正则性结果,我们证明了严格的误差估计,并使用合适的对数加权空间提供了能量范数的对数收敛阶。此外,我们证明了对数问题的刚度矩阵可以作为分数阶刚度矩阵在s=0时的导数得到。最后,我们研究了离散特征值问题与其收敛到连续特征值问题之间的关系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Computers & Mathematics with Applications
Computers & Mathematics with Applications 工程技术-计算机:跨学科应用
CiteScore
5.10
自引率
10.30%
发文量
396
审稿时长
9.9 weeks
期刊介绍: Computers & Mathematics with Applications provides a medium of exchange for those engaged in fields contributing to building successful simulations for science and engineering using Partial Differential Equations (PDEs).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信