Benjamín Torres-Olea , Antonio Pérez-Merchán , Carolina Zampieri , Rubén Luna-León , José J. Reina , Ramón Moreno-Tost , Juan Antonio Cecilia , Cristina García-Sancho , Pedro Maireles-Torres
{"title":"Novel method for the production of Zr-doped Beta-zeolites and their use in the production of 5-(hydroxymethyl)furfural etherified biofuels","authors":"Benjamín Torres-Olea , Antonio Pérez-Merchán , Carolina Zampieri , Rubén Luna-León , José J. Reina , Ramón Moreno-Tost , Juan Antonio Cecilia , Cristina García-Sancho , Pedro Maireles-Torres","doi":"10.1016/j.cattod.2025.115379","DOIUrl":null,"url":null,"abstract":"<div><div>A Beta zeolite with a high Al:Si molar ratio was dealuminated and the resulting silanol nests were functionalized with Zr to generate Lewis acid sites, for the catalytic transfer hydrogenation of the carbonyl group of 5-(hydroxymethyl)furfural (HMF), whose subsequent etherification with isopropanol led to the formation of 2,5-bis(isopropoxymethyl)furan, a potential biofuel. In this work, it was demonstrated that the parent zeolite was incapable of performing the reduction of HMF, instead directing the reaction towards the production of 5-(isopropoxymethyl)furfural (IMF) (90 % yield after 1 h at 180 ºC, with 150 mg of HMF). However, Zr-doped zeolites allowed the conversion of 5-(hydroxymethyl)furfural into its mono- and bis-etherified derivatives, and a 62 % yield of 2,5-bis(isopropoxymethyl)furan was achieved with the zeolite with a Si:Zr molar ratio of 30, after 5 h at 180 ºC. Zr loading was identified as an important factor in the catalyst deactivation due to the blocking of accessibility to the active sites required for the process at high Zr loading.</div></div>","PeriodicalId":264,"journal":{"name":"Catalysis Today","volume":"458 ","pages":"Article 115379"},"PeriodicalIF":5.2000,"publicationDate":"2025-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Catalysis Today","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S092058612500197X","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
A Beta zeolite with a high Al:Si molar ratio was dealuminated and the resulting silanol nests were functionalized with Zr to generate Lewis acid sites, for the catalytic transfer hydrogenation of the carbonyl group of 5-(hydroxymethyl)furfural (HMF), whose subsequent etherification with isopropanol led to the formation of 2,5-bis(isopropoxymethyl)furan, a potential biofuel. In this work, it was demonstrated that the parent zeolite was incapable of performing the reduction of HMF, instead directing the reaction towards the production of 5-(isopropoxymethyl)furfural (IMF) (90 % yield after 1 h at 180 ºC, with 150 mg of HMF). However, Zr-doped zeolites allowed the conversion of 5-(hydroxymethyl)furfural into its mono- and bis-etherified derivatives, and a 62 % yield of 2,5-bis(isopropoxymethyl)furan was achieved with the zeolite with a Si:Zr molar ratio of 30, after 5 h at 180 ºC. Zr loading was identified as an important factor in the catalyst deactivation due to the blocking of accessibility to the active sites required for the process at high Zr loading.
期刊介绍:
Catalysis Today focuses on the rapid publication of original invited papers devoted to currently important topics in catalysis and related subjects. The journal only publishes special issues (Proposing a Catalysis Today Special Issue), each of which is supervised by Guest Editors who recruit individual papers and oversee the peer review process. Catalysis Today offers researchers in the field of catalysis in-depth overviews of topical issues.
Both fundamental and applied aspects of catalysis are covered. Subjects such as catalysis of immobilized organometallic and biocatalytic systems are welcome. Subjects related to catalysis such as experimental techniques, adsorption, process technology, synthesis, in situ characterization, computational, theoretical modeling, imaging and others are included if there is a clear relationship to catalysis.