Yujie Wu , Yaning Xu , Min Tang , Yawen Qiao , Chengwei Zhang , Puguang Ji , Olga Klimova-Korsmik , Mirtemir Kurbanov , Gongkai Wang
{"title":"Pore and doping engineering of carbon cathodes for high-performance Zn-ion capacitors","authors":"Yujie Wu , Yaning Xu , Min Tang , Yawen Qiao , Chengwei Zhang , Puguang Ji , Olga Klimova-Korsmik , Mirtemir Kurbanov , Gongkai Wang","doi":"10.1016/j.micromeso.2025.113703","DOIUrl":null,"url":null,"abstract":"<div><div>Pore engineering emerges as a critical strategy for improving carbon cathodes in Zn-ion capacitors (ZICs). Nevertheless, harmonizing the ratios of various pore levels, including macropores, mesopores, and micropores, to concurrently achieve superior Zn storage capacity and sustained cyclic stability within ZICs represents an ongoing and intricate challenge. In this work, we propose a novel pore and doping engineering strategy for the carbon cathode, achieving N-doped ordered macro-/meso-/microporous carbon (denoted as N-Macro/Meso/Micro-C) via templating methods. In which, the ordered interconnected macropores can provide channels for rapid electrolyte diffusion, the mesopores can act as intermediaries, bridging the gap between the macropores and micropores, optimizing the ion transport pathways, and the micropores can provide abundant active sites for Zn-storage. Furthermore, the introduction of N atoms within carbon enhances Zn-ion affinity and stability. As expected, ZICs assembled with the N-Macro/Meso/Micro-C cathode exhibit remarkable performance, delivering a high Max. energy/power density of 143.14 Wh kg<sup>−1</sup>/40.1 kW kg<sup>−1</sup>. Remarkably, after 50,000 cycles, the ZICs can retain 88 % of their initial capacity, illustrating robust cyclability. These advancements are further validated in flexible Zn-ion micro capacitors, showing excellent performance under mechanical stress. The colloidal crystal template-based pore engineering design philosophy will provide direction for the development of the next generation of high-performance Zn-ion based devices.</div></div>","PeriodicalId":392,"journal":{"name":"Microporous and Mesoporous Materials","volume":"395 ","pages":"Article 113703"},"PeriodicalIF":4.8000,"publicationDate":"2025-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microporous and Mesoporous Materials","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1387181125002173","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
Pore engineering emerges as a critical strategy for improving carbon cathodes in Zn-ion capacitors (ZICs). Nevertheless, harmonizing the ratios of various pore levels, including macropores, mesopores, and micropores, to concurrently achieve superior Zn storage capacity and sustained cyclic stability within ZICs represents an ongoing and intricate challenge. In this work, we propose a novel pore and doping engineering strategy for the carbon cathode, achieving N-doped ordered macro-/meso-/microporous carbon (denoted as N-Macro/Meso/Micro-C) via templating methods. In which, the ordered interconnected macropores can provide channels for rapid electrolyte diffusion, the mesopores can act as intermediaries, bridging the gap between the macropores and micropores, optimizing the ion transport pathways, and the micropores can provide abundant active sites for Zn-storage. Furthermore, the introduction of N atoms within carbon enhances Zn-ion affinity and stability. As expected, ZICs assembled with the N-Macro/Meso/Micro-C cathode exhibit remarkable performance, delivering a high Max. energy/power density of 143.14 Wh kg−1/40.1 kW kg−1. Remarkably, after 50,000 cycles, the ZICs can retain 88 % of their initial capacity, illustrating robust cyclability. These advancements are further validated in flexible Zn-ion micro capacitors, showing excellent performance under mechanical stress. The colloidal crystal template-based pore engineering design philosophy will provide direction for the development of the next generation of high-performance Zn-ion based devices.
期刊介绍:
Microporous and Mesoporous Materials covers novel and significant aspects of porous solids classified as either microporous (pore size up to 2 nm) or mesoporous (pore size 2 to 50 nm). The porosity should have a specific impact on the material properties or application. Typical examples are zeolites and zeolite-like materials, pillared materials, clathrasils and clathrates, carbon molecular sieves, ordered mesoporous materials, organic/inorganic porous hybrid materials, or porous metal oxides. Both natural and synthetic porous materials are within the scope of the journal.
Topics which are particularly of interest include:
All aspects of natural microporous and mesoporous solids
The synthesis of crystalline or amorphous porous materials
The physico-chemical characterization of microporous and mesoporous solids, especially spectroscopic and microscopic
The modification of microporous and mesoporous solids, for example by ion exchange or solid-state reactions
All topics related to diffusion of mobile species in the pores of microporous and mesoporous materials
Adsorption (and other separation techniques) using microporous or mesoporous adsorbents
Catalysis by microporous and mesoporous materials
Host/guest interactions
Theoretical chemistry and modelling of host/guest interactions
All topics related to the application of microporous and mesoporous materials in industrial catalysis, separation technology, environmental protection, electrochemistry, membranes, sensors, optical devices, etc.