Hypo-elasticity, Cauchy-elasticity, corotational stability and monotonicity in the logarithmic strain

IF 5 2区 工程技术 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Patrizio Neff , Sebastian Holthausen , Marco Valerio d’Agostino , Davide Bernardini , Adam Sky , Ionel-Dumitrel Ghiba , Robert J. Martin
{"title":"Hypo-elasticity, Cauchy-elasticity, corotational stability and monotonicity in the logarithmic strain","authors":"Patrizio Neff ,&nbsp;Sebastian Holthausen ,&nbsp;Marco Valerio d’Agostino ,&nbsp;Davide Bernardini ,&nbsp;Adam Sky ,&nbsp;Ionel-Dumitrel Ghiba ,&nbsp;Robert J. Martin","doi":"10.1016/j.jmps.2025.106074","DOIUrl":null,"url":null,"abstract":"<div><div>We combine the rate formulation for the objective, corotational Zaremba–Jaumann rate <span><span><span><math><mrow><mfrac><mrow><msup><mrow><mi>D</mi></mrow><mrow><mo>ZJ</mo></mrow></msup></mrow><mrow><mi>D</mi><mi>t</mi></mrow></mfrac><mrow><mo>[</mo><mi>σ</mi><mo>]</mo></mrow><mo>=</mo><msup><mrow><mi>H</mi></mrow><mrow><mo>ZJ</mo></mrow></msup><mrow><mo>(</mo><mi>σ</mi><mo>)</mo></mrow><mo>.</mo><mi>D</mi><mo>,</mo><mspace></mspace><mi>D</mi><mo>=</mo><mo>sym</mo><msub><mrow><mi>D</mi></mrow><mrow><mi>ξ</mi></mrow></msub><mi>v</mi><mspace></mspace><mo>,</mo></mrow></math></span></span></span> operating on the Cauchy stress <span><math><mi>σ</mi></math></span>, the Eulerian rate of deformation <span><math><mi>D</mi></math></span> and the spatial velocity <span><math><mi>v</mi></math></span> with the novel “corotational stability postulate” <span><span><span>(CSP)</span><span><math><mrow><mrow><mo>〈</mo><mrow><mfrac><mrow><msup><mrow><mi>D</mi></mrow><mrow><mo>ZJ</mo></mrow></msup></mrow><mrow><mi>D</mi><mi>t</mi></mrow></mfrac><mrow><mo>[</mo><mi>σ</mi><mo>]</mo></mrow><mo>,</mo><mi>D</mi></mrow><mo>〉</mo></mrow><mo>&gt;</mo><mn>0</mn><mspace></mspace><mo>∀</mo><mspace></mspace><mi>D</mi><mo>∈</mo><mo>Sym</mo><mrow><mo>(</mo><mn>3</mn><mo>)</mo></mrow><mo>∖</mo><mrow><mo>{</mo><mn>0</mn><mo>}</mo></mrow></mrow></math></span></span></span>to show that for a given isotropic Cauchy-elastic constitutive law <span><math><mrow><mi>B</mi><mo>↦</mo><mi>σ</mi><mrow><mo>(</mo><mi>B</mi><mo>)</mo></mrow></mrow></math></span> in terms of the left Cauchy–Green tensor <span><math><mrow><mi>B</mi><mo>=</mo><mi>F</mi><msup><mrow><mi>F</mi></mrow><mrow><mi>T</mi></mrow></msup></mrow></math></span>, the induced fourth-order tangent stiffness tensor <span><math><mrow><msup><mrow><mi>H</mi></mrow><mrow><mo>ZJ</mo></mrow></msup><mrow><mo>(</mo><mi>σ</mi><mo>)</mo></mrow></mrow></math></span> is positive definite if and only if for <span><math><mrow><mover><mrow><mi>σ</mi></mrow><mrow><mo>̂</mo></mrow></mover><mrow><mo>(</mo><mo>log</mo><mi>B</mi><mo>)</mo></mrow><mo>:</mo><mo>=</mo><mi>σ</mi><mrow><mo>(</mo><mi>B</mi><mo>)</mo></mrow></mrow></math></span>, the strong True-Stress–True-Strain monotonicity condition <span><span>(TSTS-M<span><math><mrow><mo>+</mo><mo>+</mo></mrow></math></span>)</span></span> in the logarithmic strain is satisfied: <span><span><span><span>(TSTS-M++)</span><span><math><mrow><mo>sym</mo><msub><mrow><mi>D</mi></mrow><mrow><mo>log</mo><mi>B</mi></mrow></msub><mover><mrow><mi>σ</mi></mrow><mrow><mo>̂</mo></mrow></mover><mrow><mo>(</mo><mo>log</mo><mi>B</mi><mo>)</mo></mrow><mo>∈</mo><msubsup><mrow><mo>Sym</mo></mrow><mrow><mn>4</mn></mrow><mrow><mo>+</mo><mo>+</mo></mrow></msubsup><mrow><mo>(</mo><mn>6</mn><mo>)</mo></mrow></mrow></math></span></span><span><span><math><mrow><mo>⟹</mo><mspace></mspace><mrow><mo>〈</mo><mover><mrow><mi>σ</mi></mrow><mrow><mo>̂</mo></mrow></mover><mrow><mo>(</mo><mo>log</mo><msub><mrow><mi>B</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>)</mo></mrow><mo>−</mo><mover><mrow><mi>σ</mi></mrow><mrow><mo>̂</mo></mrow></mover><mrow><mo>(</mo><mo>log</mo><msub><mrow><mi>B</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>)</mo></mrow><mo>,</mo><mo>log</mo><msub><mrow><mi>B</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>−</mo><mo>log</mo><msub><mrow><mi>B</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>〉</mo></mrow><mo>&gt;</mo><mn>0</mn><mspace></mspace><mo>∀</mo><mspace></mspace><msub><mrow><mi>B</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>B</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>∈</mo><msup><mrow><mo>Sym</mo></mrow><mrow><mo>+</mo><mo>+</mo></mrow></msup><mrow><mo>(</mo><mn>3</mn><mo>)</mo></mrow><mspace></mspace><mo>,</mo><mspace></mspace><msub><mrow><mi>B</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>≠</mo><msub><mrow><mi>B</mi></mrow><mrow><mn>2</mn></mrow></msub><mspace></mspace><mo>.</mo></mrow></math></span></span></span></span> Thus <span><span>(CSP)</span></span> implies <span><span>(TSTS-M<span><math><mrow><mo>+</mo><mo>+</mo></mrow></math></span>)</span></span> and vice-versa, and both imply the invertibility of the hypo-elastic material law between the stress and strain rates given by the tensor <span><math><mrow><msup><mrow><mi>H</mi></mrow><mrow><mo>ZJ</mo></mrow></msup><mrow><mo>(</mo><mi>σ</mi><mo>)</mo></mrow></mrow></math></span>, since <span><math><mrow><msup><mrow><mi>H</mi></mrow><mrow><mo>ZJ</mo></mrow></msup><mrow><mo>(</mo><mi>σ</mi><mo>)</mo></mrow></mrow></math></span> is accordingly positive definite. Notably, <span><span>(TSTS-M<span><math><mrow><mo>+</mo><mo>+</mo></mrow></math></span>)</span></span> is one way to characterize the fundamental notion of “stress increases with strain”. The same characterization remains true for the corotational Green–Naghdi rate as well as the corotational logarithmic rate, conferring the corotational stability postulate <span><span>(CSP)</span></span> together with the monotonicity in the logarithmic strain tensor <span><span>(TSTS-M<span><math><mrow><mo>+</mo><mo>+</mo></mrow></math></span>)</span></span> a far reaching generality. It is conjectured that this characterization of <span><span>(CSP)</span></span> holds for a large class of reasonable corotational rates. The result for the logarithmic rate is based on a novel chain rule for corotational derivatives of isotropic tensor functions.</div></div>","PeriodicalId":17331,"journal":{"name":"Journal of The Mechanics and Physics of Solids","volume":"202 ","pages":"Article 106074"},"PeriodicalIF":5.0000,"publicationDate":"2025-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of The Mechanics and Physics of Solids","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S002250962500050X","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

We combine the rate formulation for the objective, corotational Zaremba–Jaumann rate DZJDt[σ]=HZJ(σ).D,D=symDξv, operating on the Cauchy stress σ, the Eulerian rate of deformation D and the spatial velocity v with the novel “corotational stability postulate” (CSP)DZJDt[σ],D>0DSym(3){0}to show that for a given isotropic Cauchy-elastic constitutive law Bσ(B) in terms of the left Cauchy–Green tensor B=FFT, the induced fourth-order tangent stiffness tensor HZJ(σ) is positive definite if and only if for σ̂(logB):=σ(B), the strong True-Stress–True-Strain monotonicity condition (TSTS-M++) in the logarithmic strain is satisfied: (TSTS-M++)symDlogBσ̂(logB)Sym4++(6)σ̂(logB1)σ̂(logB2),logB1logB2>0B1,B2Sym++(3),B1B2. Thus (CSP) implies (TSTS-M++) and vice-versa, and both imply the invertibility of the hypo-elastic material law between the stress and strain rates given by the tensor HZJ(σ), since HZJ(σ) is accordingly positive definite. Notably, (TSTS-M++) is one way to characterize the fundamental notion of “stress increases with strain”. The same characterization remains true for the corotational Green–Naghdi rate as well as the corotational logarithmic rate, conferring the corotational stability postulate (CSP) together with the monotonicity in the logarithmic strain tensor (TSTS-M++) a far reaching generality. It is conjectured that this characterization of (CSP) holds for a large class of reasonable corotational rates. The result for the logarithmic rate is based on a novel chain rule for corotational derivatives of isotropic tensor functions.
次弹性、柯西弹性、旋转稳定性及对数应变单调性
我们结合了客观的Zaremba-Jaumann速率公式,即Zaremba-Jaumann速率DZJDt[σ]=HZJ(σ)。D,D=symDξv,在柯西应力σ、欧拉变形率D和空间速度v的作用下,运用新的“旋转稳定性假设”(CSP) < DZJDt[σ],D > >0∀D∈Sym(3)∈{0}来证明对于给定的各向同性柯西弹性本构律B∈σ(B),以左柯西格林张量B=FFT表示,导出的四阶切线刚度张量HZJ(σ)是正定的当且仅当σ σ(B):=σ(B),对数应变中的强真应力-真应变单调性条件(TSTS-M++)满足:(TSTS-M++)symDlogBσ′(logB)∈Sym4++(6) ÷ < σ′(logB1)−σ′(logB2),logB1−logB2 > >0∀B1,B2∈Sym++(3),B1≠B2。因此,(CSP)意味着(TSTS-M++),反之亦然,两者都意味着由张量HZJ(σ)给出的应力和应变率之间的准弹性材料定律的可逆性,因为HZJ(σ)因此是正定的。值得注意的是,(tsts - m++)是表征“应力随应变增加”这一基本概念的一种方法。对于同向Green-Naghdi速率和同向对数速率,相同的表征仍然成立,赋予同向稳定性假设(CSP)和对数应变张量(tsts - m++)的单调性具有深远的普遍性。据推测,(CSP)的这一特性适用于一大类合理的自转速率。对对数速率的结果是基于一个新的链式法则的各向同性张量函数的同向导数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of The Mechanics and Physics of Solids
Journal of The Mechanics and Physics of Solids 物理-材料科学:综合
CiteScore
9.80
自引率
9.40%
发文量
276
审稿时长
52 days
期刊介绍: The aim of Journal of The Mechanics and Physics of Solids is to publish research of the highest quality and of lasting significance on the mechanics of solids. The scope is broad, from fundamental concepts in mechanics to the analysis of novel phenomena and applications. Solids are interpreted broadly to include both hard and soft materials as well as natural and synthetic structures. The approach can be theoretical, experimental or computational.This research activity sits within engineering science and the allied areas of applied mathematics, materials science, bio-mechanics, applied physics, and geophysics. The Journal was founded in 1952 by Rodney Hill, who was its Editor-in-Chief until 1968. The topics of interest to the Journal evolve with developments in the subject but its basic ethos remains the same: to publish research of the highest quality relating to the mechanics of solids. Thus, emphasis is placed on the development of fundamental concepts of mechanics and novel applications of these concepts based on theoretical, experimental or computational approaches, drawing upon the various branches of engineering science and the allied areas within applied mathematics, materials science, structural engineering, applied physics, and geophysics. The main purpose of the Journal is to foster scientific understanding of the processes of deformation and mechanical failure of all solid materials, both technological and natural, and the connections between these processes and their underlying physical mechanisms. In this sense, the content of the Journal should reflect the current state of the discipline in analysis, experimental observation, and numerical simulation. In the interest of achieving this goal, authors are encouraged to consider the significance of their contributions for the field of mechanics and the implications of their results, in addition to describing the details of their work.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信