Patrizio Neff , Sebastian Holthausen , Marco Valerio d’Agostino , Davide Bernardini , Adam Sky , Ionel-Dumitrel Ghiba , Robert J. Martin
{"title":"Hypo-elasticity, Cauchy-elasticity, corotational stability and monotonicity in the logarithmic strain","authors":"Patrizio Neff , Sebastian Holthausen , Marco Valerio d’Agostino , Davide Bernardini , Adam Sky , Ionel-Dumitrel Ghiba , Robert J. Martin","doi":"10.1016/j.jmps.2025.106074","DOIUrl":null,"url":null,"abstract":"<div><div>We combine the rate formulation for the objective, corotational Zaremba–Jaumann rate <span><span><span><math><mrow><mfrac><mrow><msup><mrow><mi>D</mi></mrow><mrow><mo>ZJ</mo></mrow></msup></mrow><mrow><mi>D</mi><mi>t</mi></mrow></mfrac><mrow><mo>[</mo><mi>σ</mi><mo>]</mo></mrow><mo>=</mo><msup><mrow><mi>H</mi></mrow><mrow><mo>ZJ</mo></mrow></msup><mrow><mo>(</mo><mi>σ</mi><mo>)</mo></mrow><mo>.</mo><mi>D</mi><mo>,</mo><mspace></mspace><mi>D</mi><mo>=</mo><mo>sym</mo><msub><mrow><mi>D</mi></mrow><mrow><mi>ξ</mi></mrow></msub><mi>v</mi><mspace></mspace><mo>,</mo></mrow></math></span></span></span> operating on the Cauchy stress <span><math><mi>σ</mi></math></span>, the Eulerian rate of deformation <span><math><mi>D</mi></math></span> and the spatial velocity <span><math><mi>v</mi></math></span> with the novel “corotational stability postulate” <span><span><span>(CSP)</span><span><math><mrow><mrow><mo>〈</mo><mrow><mfrac><mrow><msup><mrow><mi>D</mi></mrow><mrow><mo>ZJ</mo></mrow></msup></mrow><mrow><mi>D</mi><mi>t</mi></mrow></mfrac><mrow><mo>[</mo><mi>σ</mi><mo>]</mo></mrow><mo>,</mo><mi>D</mi></mrow><mo>〉</mo></mrow><mo>></mo><mn>0</mn><mspace></mspace><mo>∀</mo><mspace></mspace><mi>D</mi><mo>∈</mo><mo>Sym</mo><mrow><mo>(</mo><mn>3</mn><mo>)</mo></mrow><mo>∖</mo><mrow><mo>{</mo><mn>0</mn><mo>}</mo></mrow></mrow></math></span></span></span>to show that for a given isotropic Cauchy-elastic constitutive law <span><math><mrow><mi>B</mi><mo>↦</mo><mi>σ</mi><mrow><mo>(</mo><mi>B</mi><mo>)</mo></mrow></mrow></math></span> in terms of the left Cauchy–Green tensor <span><math><mrow><mi>B</mi><mo>=</mo><mi>F</mi><msup><mrow><mi>F</mi></mrow><mrow><mi>T</mi></mrow></msup></mrow></math></span>, the induced fourth-order tangent stiffness tensor <span><math><mrow><msup><mrow><mi>H</mi></mrow><mrow><mo>ZJ</mo></mrow></msup><mrow><mo>(</mo><mi>σ</mi><mo>)</mo></mrow></mrow></math></span> is positive definite if and only if for <span><math><mrow><mover><mrow><mi>σ</mi></mrow><mrow><mo>̂</mo></mrow></mover><mrow><mo>(</mo><mo>log</mo><mi>B</mi><mo>)</mo></mrow><mo>:</mo><mo>=</mo><mi>σ</mi><mrow><mo>(</mo><mi>B</mi><mo>)</mo></mrow></mrow></math></span>, the strong True-Stress–True-Strain monotonicity condition <span><span>(TSTS-M<span><math><mrow><mo>+</mo><mo>+</mo></mrow></math></span>)</span></span> in the logarithmic strain is satisfied: <span><span><span><span>(TSTS-M++)</span><span><math><mrow><mo>sym</mo><msub><mrow><mi>D</mi></mrow><mrow><mo>log</mo><mi>B</mi></mrow></msub><mover><mrow><mi>σ</mi></mrow><mrow><mo>̂</mo></mrow></mover><mrow><mo>(</mo><mo>log</mo><mi>B</mi><mo>)</mo></mrow><mo>∈</mo><msubsup><mrow><mo>Sym</mo></mrow><mrow><mn>4</mn></mrow><mrow><mo>+</mo><mo>+</mo></mrow></msubsup><mrow><mo>(</mo><mn>6</mn><mo>)</mo></mrow></mrow></math></span></span><span><span><math><mrow><mo>⟹</mo><mspace></mspace><mrow><mo>〈</mo><mover><mrow><mi>σ</mi></mrow><mrow><mo>̂</mo></mrow></mover><mrow><mo>(</mo><mo>log</mo><msub><mrow><mi>B</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>)</mo></mrow><mo>−</mo><mover><mrow><mi>σ</mi></mrow><mrow><mo>̂</mo></mrow></mover><mrow><mo>(</mo><mo>log</mo><msub><mrow><mi>B</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>)</mo></mrow><mo>,</mo><mo>log</mo><msub><mrow><mi>B</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>−</mo><mo>log</mo><msub><mrow><mi>B</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>〉</mo></mrow><mo>></mo><mn>0</mn><mspace></mspace><mo>∀</mo><mspace></mspace><msub><mrow><mi>B</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>B</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>∈</mo><msup><mrow><mo>Sym</mo></mrow><mrow><mo>+</mo><mo>+</mo></mrow></msup><mrow><mo>(</mo><mn>3</mn><mo>)</mo></mrow><mspace></mspace><mo>,</mo><mspace></mspace><msub><mrow><mi>B</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>≠</mo><msub><mrow><mi>B</mi></mrow><mrow><mn>2</mn></mrow></msub><mspace></mspace><mo>.</mo></mrow></math></span></span></span></span> Thus <span><span>(CSP)</span></span> implies <span><span>(TSTS-M<span><math><mrow><mo>+</mo><mo>+</mo></mrow></math></span>)</span></span> and vice-versa, and both imply the invertibility of the hypo-elastic material law between the stress and strain rates given by the tensor <span><math><mrow><msup><mrow><mi>H</mi></mrow><mrow><mo>ZJ</mo></mrow></msup><mrow><mo>(</mo><mi>σ</mi><mo>)</mo></mrow></mrow></math></span>, since <span><math><mrow><msup><mrow><mi>H</mi></mrow><mrow><mo>ZJ</mo></mrow></msup><mrow><mo>(</mo><mi>σ</mi><mo>)</mo></mrow></mrow></math></span> is accordingly positive definite. Notably, <span><span>(TSTS-M<span><math><mrow><mo>+</mo><mo>+</mo></mrow></math></span>)</span></span> is one way to characterize the fundamental notion of “stress increases with strain”. The same characterization remains true for the corotational Green–Naghdi rate as well as the corotational logarithmic rate, conferring the corotational stability postulate <span><span>(CSP)</span></span> together with the monotonicity in the logarithmic strain tensor <span><span>(TSTS-M<span><math><mrow><mo>+</mo><mo>+</mo></mrow></math></span>)</span></span> a far reaching generality. It is conjectured that this characterization of <span><span>(CSP)</span></span> holds for a large class of reasonable corotational rates. The result for the logarithmic rate is based on a novel chain rule for corotational derivatives of isotropic tensor functions.</div></div>","PeriodicalId":17331,"journal":{"name":"Journal of The Mechanics and Physics of Solids","volume":"202 ","pages":"Article 106074"},"PeriodicalIF":5.0000,"publicationDate":"2025-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of The Mechanics and Physics of Solids","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S002250962500050X","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
We combine the rate formulation for the objective, corotational Zaremba–Jaumann rate operating on the Cauchy stress , the Eulerian rate of deformation and the spatial velocity with the novel “corotational stability postulate” (CSP)to show that for a given isotropic Cauchy-elastic constitutive law in terms of the left Cauchy–Green tensor , the induced fourth-order tangent stiffness tensor is positive definite if and only if for , the strong True-Stress–True-Strain monotonicity condition (TSTS-M) in the logarithmic strain is satisfied: (TSTS-M++) Thus (CSP) implies (TSTS-M) and vice-versa, and both imply the invertibility of the hypo-elastic material law between the stress and strain rates given by the tensor , since is accordingly positive definite. Notably, (TSTS-M) is one way to characterize the fundamental notion of “stress increases with strain”. The same characterization remains true for the corotational Green–Naghdi rate as well as the corotational logarithmic rate, conferring the corotational stability postulate (CSP) together with the monotonicity in the logarithmic strain tensor (TSTS-M) a far reaching generality. It is conjectured that this characterization of (CSP) holds for a large class of reasonable corotational rates. The result for the logarithmic rate is based on a novel chain rule for corotational derivatives of isotropic tensor functions.
期刊介绍:
The aim of Journal of The Mechanics and Physics of Solids is to publish research of the highest quality and of lasting significance on the mechanics of solids. The scope is broad, from fundamental concepts in mechanics to the analysis of novel phenomena and applications. Solids are interpreted broadly to include both hard and soft materials as well as natural and synthetic structures. The approach can be theoretical, experimental or computational.This research activity sits within engineering science and the allied areas of applied mathematics, materials science, bio-mechanics, applied physics, and geophysics.
The Journal was founded in 1952 by Rodney Hill, who was its Editor-in-Chief until 1968. The topics of interest to the Journal evolve with developments in the subject but its basic ethos remains the same: to publish research of the highest quality relating to the mechanics of solids. Thus, emphasis is placed on the development of fundamental concepts of mechanics and novel applications of these concepts based on theoretical, experimental or computational approaches, drawing upon the various branches of engineering science and the allied areas within applied mathematics, materials science, structural engineering, applied physics, and geophysics.
The main purpose of the Journal is to foster scientific understanding of the processes of deformation and mechanical failure of all solid materials, both technological and natural, and the connections between these processes and their underlying physical mechanisms. In this sense, the content of the Journal should reflect the current state of the discipline in analysis, experimental observation, and numerical simulation. In the interest of achieving this goal, authors are encouraged to consider the significance of their contributions for the field of mechanics and the implications of their results, in addition to describing the details of their work.