Dingchuan Xue , Cole Fincher , Ruyue Fang , Brian W. Sheldon , Long-Qing Chen , Sulin Zhang
{"title":"Dynamic interplay of dendrite growth and cracking in lithium metal solid-state batteries","authors":"Dingchuan Xue , Cole Fincher , Ruyue Fang , Brian W. Sheldon , Long-Qing Chen , Sulin Zhang","doi":"10.1016/j.jmps.2025.106197","DOIUrl":null,"url":null,"abstract":"<div><div>All-solid-state batteries (ASSBs) represent a significant leap forward compared to conventional liquid-electrolyte based batteries, offering enhanced energy density, improved safety, extended cycle longevity, and reduced environmental footprint. However, the persistent challenge of uncontrollable dendrite growth within solid electrolytes (SEs) has posed substantial obstacles to the realization of Li metal ASSBs. This study develops a phase field model to unveil a dynamic interplay between Li dendrite growth and crack propagation in the polycrystalline Li<sub>7</sub>La<sub>3</sub>Zr<sub>2</sub>O<sub>12</sub> (LLZO) solid electrolyte. Our modeling highlights distinct nucleation sites for Li electrodeposition, localized in proximity to the electrode/SE interface, a phenomenon sensitive to cell geometry. Li deposition initiates local stress accumulation that wedges the SE to cracking, and fracture induced stress relaxation facilitates further Li electrodeposition. Remarkably, a reciprocal relationship emerges between Li dendrite growth and crack propagation, each process reinforcing the other in an alternating manner. The dynamic interplay unveils a characteristic “wait-and-go” temporal sequence, where the progression of Li dendrites consistently trails behind the crack tip, aligning with the previous experimental observations. Drawing from the reciprocal dynamics, we identify practical stress-engineering strategies to mitigate catastrophic cell failure by simultaneously retarding Li dendrite growth and redirecting the crack propagation paths. Our findings offer electrochemo-mechanical insights in cell design and stress management, thereby opening a unique pathway towards the realization of safe and durable Li metal ASSBs.</div></div>","PeriodicalId":17331,"journal":{"name":"Journal of The Mechanics and Physics of Solids","volume":"202 ","pages":"Article 106197"},"PeriodicalIF":6.0000,"publicationDate":"2025-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of The Mechanics and Physics of Solids","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022509625001735","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
All-solid-state batteries (ASSBs) represent a significant leap forward compared to conventional liquid-electrolyte based batteries, offering enhanced energy density, improved safety, extended cycle longevity, and reduced environmental footprint. However, the persistent challenge of uncontrollable dendrite growth within solid electrolytes (SEs) has posed substantial obstacles to the realization of Li metal ASSBs. This study develops a phase field model to unveil a dynamic interplay between Li dendrite growth and crack propagation in the polycrystalline Li7La3Zr2O12 (LLZO) solid electrolyte. Our modeling highlights distinct nucleation sites for Li electrodeposition, localized in proximity to the electrode/SE interface, a phenomenon sensitive to cell geometry. Li deposition initiates local stress accumulation that wedges the SE to cracking, and fracture induced stress relaxation facilitates further Li electrodeposition. Remarkably, a reciprocal relationship emerges between Li dendrite growth and crack propagation, each process reinforcing the other in an alternating manner. The dynamic interplay unveils a characteristic “wait-and-go” temporal sequence, where the progression of Li dendrites consistently trails behind the crack tip, aligning with the previous experimental observations. Drawing from the reciprocal dynamics, we identify practical stress-engineering strategies to mitigate catastrophic cell failure by simultaneously retarding Li dendrite growth and redirecting the crack propagation paths. Our findings offer electrochemo-mechanical insights in cell design and stress management, thereby opening a unique pathway towards the realization of safe and durable Li metal ASSBs.
期刊介绍:
The aim of Journal of The Mechanics and Physics of Solids is to publish research of the highest quality and of lasting significance on the mechanics of solids. The scope is broad, from fundamental concepts in mechanics to the analysis of novel phenomena and applications. Solids are interpreted broadly to include both hard and soft materials as well as natural and synthetic structures. The approach can be theoretical, experimental or computational.This research activity sits within engineering science and the allied areas of applied mathematics, materials science, bio-mechanics, applied physics, and geophysics.
The Journal was founded in 1952 by Rodney Hill, who was its Editor-in-Chief until 1968. The topics of interest to the Journal evolve with developments in the subject but its basic ethos remains the same: to publish research of the highest quality relating to the mechanics of solids. Thus, emphasis is placed on the development of fundamental concepts of mechanics and novel applications of these concepts based on theoretical, experimental or computational approaches, drawing upon the various branches of engineering science and the allied areas within applied mathematics, materials science, structural engineering, applied physics, and geophysics.
The main purpose of the Journal is to foster scientific understanding of the processes of deformation and mechanical failure of all solid materials, both technological and natural, and the connections between these processes and their underlying physical mechanisms. In this sense, the content of the Journal should reflect the current state of the discipline in analysis, experimental observation, and numerical simulation. In the interest of achieving this goal, authors are encouraged to consider the significance of their contributions for the field of mechanics and the implications of their results, in addition to describing the details of their work.