Katherine Ardila, Tsung-Wei Liu, Diego A. Gómez-Gualdrón* and Alexander J. Pak*,
{"title":"Deciphering Self-Assembly Mechanisms of IRMOF-n-Inspired Three-Dimensional Cubic-Symmetry Nanoporous Crystals from Multiscale Simulations","authors":"Katherine Ardila, Tsung-Wei Liu, Diego A. Gómez-Gualdrón* and Alexander J. Pak*, ","doi":"10.1021/acs.chemmater.5c0052710.1021/acs.chemmater.5c00527","DOIUrl":null,"url":null,"abstract":"<p >The formation mechanisms of metal−organic frameworks (MOFs) are not fully understood. Therefore, experimental realization of potential “breakthrough” MOFs is hindered by uncertainty in the synthesis conditions that would allow the constituent nodes and linkers to self-assemble into the targeted MOF structure. Here, a multiscale endeavor using density functional theory (DFT) calculations, followed by metadynamics with DFT-informed classical atomistic potentials, followed by standard molecular dynamics (MD) and Hamiltonian replica exchange (HREX) simulations with a metadynamics-informed, coarse-grained (CG) model, was used to study the self-assembly mechanism of cubic-symmetry porous crystals inspired by the IRMOF-<i>n</i> family of MOFs. Mechanistic differences were examined for different values of node–linker coordination strength─understood as the free energy penalty for breaking a coordination bond in a solvated environment. Our integrated analyses of HREX-derived free energy surfaces and standard MD trajectories indicate that at coordination strengths typical of the IRMOF-<i>n</i> family in dimethylformamide (DMF) (i.e., 52 kJ/mol), disassembled nodes and linkers are favored to overcome a small 1.3 kJ/mol free energy barrier to first form solid amorphous clusters, which then overcome a series of barriers (the largest of which is 3.7 kJ/mol) to heal and form ordered, more stable, cubic-symmetry crystals. This healing seems to occur through the splintering/reattaching of small clusters from/to large clusters. Our analyses also suggest that if coordination strength is moderately weakened (e.g., to 40 kJ/mol), crystals form without the preliminary formation of amorphous clusters. However, further coordination strength weakening (e.g., to 36 kJ/mol) makes the formation of sizable crystals unfavorable thermodynamically. On the other hand, strengthening the coordination would increase the free energy barrier to heal the amorphous clusters into crystals. Accordingly, if coordination becomes too strong (e.g., 65+ kJ/mol), then healing may become unlikely. In practical terms, our study suggests that MOF formation is favored only when the free energy of coordination, accounting for solvent effects, falls within a relatively narrow range (approximately 40 to 65 kJ/mol), at least at 300 K, for MOFs with cubic symmetries.</p>","PeriodicalId":33,"journal":{"name":"Chemistry of Materials","volume":"37 10","pages":"3799–3812 3799–3812"},"PeriodicalIF":7.2000,"publicationDate":"2025-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemistry of Materials","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.chemmater.5c00527","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The formation mechanisms of metal−organic frameworks (MOFs) are not fully understood. Therefore, experimental realization of potential “breakthrough” MOFs is hindered by uncertainty in the synthesis conditions that would allow the constituent nodes and linkers to self-assemble into the targeted MOF structure. Here, a multiscale endeavor using density functional theory (DFT) calculations, followed by metadynamics with DFT-informed classical atomistic potentials, followed by standard molecular dynamics (MD) and Hamiltonian replica exchange (HREX) simulations with a metadynamics-informed, coarse-grained (CG) model, was used to study the self-assembly mechanism of cubic-symmetry porous crystals inspired by the IRMOF-n family of MOFs. Mechanistic differences were examined for different values of node–linker coordination strength─understood as the free energy penalty for breaking a coordination bond in a solvated environment. Our integrated analyses of HREX-derived free energy surfaces and standard MD trajectories indicate that at coordination strengths typical of the IRMOF-n family in dimethylformamide (DMF) (i.e., 52 kJ/mol), disassembled nodes and linkers are favored to overcome a small 1.3 kJ/mol free energy barrier to first form solid amorphous clusters, which then overcome a series of barriers (the largest of which is 3.7 kJ/mol) to heal and form ordered, more stable, cubic-symmetry crystals. This healing seems to occur through the splintering/reattaching of small clusters from/to large clusters. Our analyses also suggest that if coordination strength is moderately weakened (e.g., to 40 kJ/mol), crystals form without the preliminary formation of amorphous clusters. However, further coordination strength weakening (e.g., to 36 kJ/mol) makes the formation of sizable crystals unfavorable thermodynamically. On the other hand, strengthening the coordination would increase the free energy barrier to heal the amorphous clusters into crystals. Accordingly, if coordination becomes too strong (e.g., 65+ kJ/mol), then healing may become unlikely. In practical terms, our study suggests that MOF formation is favored only when the free energy of coordination, accounting for solvent effects, falls within a relatively narrow range (approximately 40 to 65 kJ/mol), at least at 300 K, for MOFs with cubic symmetries.
期刊介绍:
The journal Chemistry of Materials focuses on publishing original research at the intersection of materials science and chemistry. The studies published in the journal involve chemistry as a prominent component and explore topics such as the design, synthesis, characterization, processing, understanding, and application of functional or potentially functional materials. The journal covers various areas of interest, including inorganic and organic solid-state chemistry, nanomaterials, biomaterials, thin films and polymers, and composite/hybrid materials. The journal particularly seeks papers that highlight the creation or development of innovative materials with novel optical, electrical, magnetic, catalytic, or mechanical properties. It is essential that manuscripts on these topics have a primary focus on the chemistry of materials and represent a significant advancement compared to prior research. Before external reviews are sought, submitted manuscripts undergo a review process by a minimum of two editors to ensure their appropriateness for the journal and the presence of sufficient evidence of a significant advance that will be of broad interest to the materials chemistry community.