Stretching-Orientation Reinforced Double Network Solvent-Free Eutectic Gels for Ultrarobust, Flexible Human-Machine Interaction Devices

IF 18.5 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Tingzhong Li, Tongyuan Liu, Qinglu Yu, Yasen Li, Rui Liang, Guoxing Sun
{"title":"Stretching-Orientation Reinforced Double Network Solvent-Free Eutectic Gels for Ultrarobust, Flexible Human-Machine Interaction Devices","authors":"Tingzhong Li, Tongyuan Liu, Qinglu Yu, Yasen Li, Rui Liang, Guoxing Sun","doi":"10.1002/adfm.202508233","DOIUrl":null,"url":null,"abstract":"Conductive gels hold promise for human-machine interaction (HMI) devices but face limitations in brittleness, solvent reliance, and fatigue resistance. These challenges are addressed by designing a solvent-free, stretch-oriented double-network eutectogel integrating high-molecular-weight polyacrylamide (structural reinforcement) with a dynamic poly(acrylic acid)/choline chloride deep eutectic network (ionic conductivity). Synergistic effects between molecular chain entanglements and stretch-induced alignment enhance mechanical robustness and energy dissipation, achieving tensile strength of 30.70 MPa, elongation of 703%, and record-high toughness of 133.86 MJ m<sup>−3</sup> (surpassing reported eutectogels). Crucially, the aligned microstructure preserves conductive pathways, enabling multimodal sensing with high sensitivity (<i>GF</i> = 1.4 at 250% strain; <i>TCR</i> = 14.7% °C<sup>−1</sup>) and stability (&gt;300 cycles, without abrupt signal drift). Solution-based processing compatibility facilitates scalable fabrication of ultrathin coatings and printed patterns, demonstrated in functional HMI devices: a somatosensory glove (joint motion accuracy, latency &lt;17 ms), and capacitive touchscreens (latency &lt;34 ms), and temperature sensors (high thermal resolution). By resolving the strength-flexibility paradox, this work provides a platform for wearable HMI systems requiring transparency, ultrahigh strength, intrinsic flexibility, and environmental adaptability.","PeriodicalId":112,"journal":{"name":"Advanced Functional Materials","volume":"34 1","pages":""},"PeriodicalIF":18.5000,"publicationDate":"2025-05-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Functional Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/adfm.202508233","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Conductive gels hold promise for human-machine interaction (HMI) devices but face limitations in brittleness, solvent reliance, and fatigue resistance. These challenges are addressed by designing a solvent-free, stretch-oriented double-network eutectogel integrating high-molecular-weight polyacrylamide (structural reinforcement) with a dynamic poly(acrylic acid)/choline chloride deep eutectic network (ionic conductivity). Synergistic effects between molecular chain entanglements and stretch-induced alignment enhance mechanical robustness and energy dissipation, achieving tensile strength of 30.70 MPa, elongation of 703%, and record-high toughness of 133.86 MJ m−3 (surpassing reported eutectogels). Crucially, the aligned microstructure preserves conductive pathways, enabling multimodal sensing with high sensitivity (GF = 1.4 at 250% strain; TCR = 14.7% °C−1) and stability (>300 cycles, without abrupt signal drift). Solution-based processing compatibility facilitates scalable fabrication of ultrathin coatings and printed patterns, demonstrated in functional HMI devices: a somatosensory glove (joint motion accuracy, latency <17 ms), and capacitive touchscreens (latency <34 ms), and temperature sensors (high thermal resolution). By resolving the strength-flexibility paradox, this work provides a platform for wearable HMI systems requiring transparency, ultrahigh strength, intrinsic flexibility, and environmental adaptability.

Abstract Image

拉伸取向增强双网络无溶剂共晶凝胶,用于超坚固、柔性人机交互设备
导电凝胶有望用于人机交互(HMI)设备,但在脆性、溶剂依赖性和抗疲劳性方面存在局限性。通过设计一种无溶剂、面向拉伸的双网络共晶,将高分子量聚丙烯酰胺(结构增强)与动态聚丙烯酸/氯化胆碱深度共晶网络(离子导电性)相结合,解决了这些挑战。分子链缠结和拉伸诱导取向之间的协同作用增强了材料的机械鲁棒性和能量耗散,拉伸强度达到30.70 MPa,伸长率达到703%,韧性达到133.86 MJ m−3,超过了已有的共聚凝胶。至关重要的是,排列的微观结构保留了导电通路,实现了高灵敏度的多模态传感(在250%应变下GF = 1.4;TCR = 14.7%°C - 1)和稳定性(>;300个周期,无突然信号漂移)。基于解决方案的加工兼容性促进了超薄涂层和印刷图案的可扩展制造,在功能性HMI设备中得到了证明:体感手套(关节运动精度,延迟<;17毫秒),电容触摸屏(延迟<;34毫秒)和温度传感器(高热分辨率)。通过解决强度-灵活性悖论,本研究为要求透明度、超高强度、内在灵活性和环境适应性的可穿戴人机界面系统提供了一个平台。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advanced Functional Materials
Advanced Functional Materials 工程技术-材料科学:综合
CiteScore
29.50
自引率
4.20%
发文量
2086
审稿时长
2.1 months
期刊介绍: Firmly established as a top-tier materials science journal, Advanced Functional Materials reports breakthrough research in all aspects of materials science, including nanotechnology, chemistry, physics, and biology every week. Advanced Functional Materials is known for its rapid and fair peer review, quality content, and high impact, making it the first choice of the international materials science community.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信