Qiannv Liu, Zhiheng Tang, Yan Qian, Chunlei Wang, Chun Kong, Mengqian Li, Xiangyang Geng, Yan Zhang, Xiangyun Cheng, Chao Ren, Kai Wang, Lin Bai, Lin Wang, Dong Jiang, Shuo Wang, Xiaoyun Liu, Pengyan Xia
{"title":"Eukaryotic ADCY7 catalyzes the production of c-di-AMP to activate the NLRP3 inflammasome","authors":"Qiannv Liu, Zhiheng Tang, Yan Qian, Chunlei Wang, Chun Kong, Mengqian Li, Xiangyang Geng, Yan Zhang, Xiangyun Cheng, Chao Ren, Kai Wang, Lin Bai, Lin Wang, Dong Jiang, Shuo Wang, Xiaoyun Liu, Pengyan Xia","doi":"10.1038/s41589-025-01919-y","DOIUrl":null,"url":null,"abstract":"<p>Toll-like receptor 9 (TLR9) agonists cause activation of nucleotide-binding domain, leucine-rich repeat protein 3 (NLRP3) inflammasomes but the mechanism is not clear. We found that there is a second signal downstream of TLR9 that induces NLRP3 inflammasome activation. Through screening, adenylate cyclase 7 (ADCY7) was found to be an essential regulator of this process. In cells with <i>Adcy7</i> deficiency, TLR9 agonists were no longer able to activate the NLRP3 inflammasome. ADCY7 not only catalyzes the generation of cyclic adenosine monophosphate (cAMP) but also catalyzes the synthesis of its dimeric form (c-di-AMP). Moreover, c-di-AMP promotes assembly and maturation of the inflammasome by directly binding to NLRP3. Cells with <i>Adcy7</i> deletion or mutations impacting enzymatic activity cannot produce c-di-AMP. The survival of <i>Adcy7</i>-deficient mice in acute liver injury was also improved. In summary, we found that ADCY7 is required for NLRP3 inflammasome activation downstream of TLR9 by catalyzing the generation of c-di-AMP, which may serve as a target for controlling inflammatory responses in sterile infections.</p><figure></figure>","PeriodicalId":18832,"journal":{"name":"Nature chemical biology","volume":"9 1","pages":""},"PeriodicalIF":12.9000,"publicationDate":"2025-05-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature chemical biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1038/s41589-025-01919-y","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Toll-like receptor 9 (TLR9) agonists cause activation of nucleotide-binding domain, leucine-rich repeat protein 3 (NLRP3) inflammasomes but the mechanism is not clear. We found that there is a second signal downstream of TLR9 that induces NLRP3 inflammasome activation. Through screening, adenylate cyclase 7 (ADCY7) was found to be an essential regulator of this process. In cells with Adcy7 deficiency, TLR9 agonists were no longer able to activate the NLRP3 inflammasome. ADCY7 not only catalyzes the generation of cyclic adenosine monophosphate (cAMP) but also catalyzes the synthesis of its dimeric form (c-di-AMP). Moreover, c-di-AMP promotes assembly and maturation of the inflammasome by directly binding to NLRP3. Cells with Adcy7 deletion or mutations impacting enzymatic activity cannot produce c-di-AMP. The survival of Adcy7-deficient mice in acute liver injury was also improved. In summary, we found that ADCY7 is required for NLRP3 inflammasome activation downstream of TLR9 by catalyzing the generation of c-di-AMP, which may serve as a target for controlling inflammatory responses in sterile infections.
期刊介绍:
Nature Chemical Biology stands as an esteemed international monthly journal, offering a prominent platform for the chemical biology community to showcase top-tier original research and commentary. Operating at the crossroads of chemistry, biology, and related disciplines, chemical biology utilizes scientific ideas and approaches to comprehend and manipulate biological systems with molecular precision.
The journal embraces contributions from the growing community of chemical biologists, encompassing insights from chemists applying principles and tools to biological inquiries and biologists striving to comprehend and control molecular-level biological processes. We prioritize studies unveiling significant conceptual or practical advancements in areas where chemistry and biology intersect, emphasizing basic research, especially those reporting novel chemical or biological tools and offering profound molecular-level insights into underlying biological mechanisms.
Nature Chemical Biology also welcomes manuscripts describing applied molecular studies at the chemistry-biology interface due to the broad utility of chemical biology approaches in manipulating or engineering biological systems. Irrespective of scientific focus, we actively seek submissions that creatively blend chemistry and biology, particularly those providing substantial conceptual or methodological breakthroughs with the potential to open innovative research avenues. The journal maintains a robust and impartial review process, emphasizing thorough chemical and biological characterization.