At-RS31 orchestrates hierarchical cross-regulation of splicing factors and integrates alternative splicing with TOR-ABA pathways

IF 8.3 1区 生物学 Q1 PLANT SCIENCES
New Phytologist Pub Date : 2025-05-26 DOI:10.1111/nph.70221
Tino Köster, Peter Venhuizen, Martin Lewinski, Ezequiel Petrillo, Yamile Marquez, Armin Fuchs, Debashish Ray, Barbara A. Nimeth, Stefan Riegler, Sophie Franzmeier, Florencia S. Rodríguez, Federico E. Aballay, Rocío S. Tognacca, Hong Zheng, Timothy Hughes, Quaid Morris, Andrea Barta, Dorothee Staiger, Maria Kalyna
{"title":"At-RS31 orchestrates hierarchical cross-regulation of splicing factors and integrates alternative splicing with TOR-ABA pathways","authors":"Tino Köster, Peter Venhuizen, Martin Lewinski, Ezequiel Petrillo, Yamile Marquez, Armin Fuchs, Debashish Ray, Barbara A. Nimeth, Stefan Riegler, Sophie Franzmeier, Florencia S. Rodríguez, Federico E. Aballay, Rocío S. Tognacca, Hong Zheng, Timothy Hughes, Quaid Morris, Andrea Barta, Dorothee Staiger, Maria Kalyna","doi":"10.1111/nph.70221","DOIUrl":null,"url":null,"abstract":"<h2> Introduction</h2>\n<p>Gene expression in eukaryotes involves multiple regulatory layers. Following transcription, nascent RNAs undergo processing steps, including capping, splicing, polyadenylation, and chemical modification, to produce mature mRNAs (Yang <i>et al</i>., <span>2021</span>). Splicing removes introns from pre-mRNA and joins exons to generate the mature transcripts (Gilbert, <span>1978</span>). Although splicing is a highly regulated process ensuring specificity, it also shows remarkable plasticity. The spliceosome, the cellular machinery responsible for splicing, can recognize alternative splice sites, enabling a single gene to produce multiple transcript variants via alternative splicing.</p>\n<p>In plants, 40–70% of intron-containing genes undergo alternative splicing, underscoring its fundamental role in regulating gene expression during development and environmental responses (Filichkin <i>et al</i>., <span>2010</span>; Lu <i>et al</i>., <span>2010</span>; Marquez <i>et al</i>., <span>2012</span>; Chamala <i>et al</i>., <span>2015</span>). Alternative splicing not only produces diverse transcripts leading to different proteins but also generates noncoding isoforms, which may be rapidly degraded or remain stable, thus fine-tuning the total protein levels produced by a gene (Kalyna <i>et al</i>., <span>2012</span>; Petrillo, <span>2023</span>). Different types of alternative splicing events, such as exon skipping (ES), intron retention, and usage of alternative 5′ and 3′ splice sites, generate transcript diversity. While ES is common in animals, intron retention is most frequent in plants. Retained intron (RI) transcripts often remain in the nucleus, regulating protein levels during stress or developmental transitions (Kalyna <i>et al</i>., <span>2012</span>; Marquez <i>et al</i>., <span>2012</span>; Yap <i>et al</i>., <span>2012</span>; Boothby <i>et al</i>., <span>2013</span>; Leviatan <i>et al</i>., <span>2013</span>; Braunschweig <i>et al</i>., <span>2014</span>; Gohring <i>et al</i>., <span>2014</span>; Boutz <i>et al</i>., <span>2015</span>). Furthermore, exitrons (EIs), alternatively spliced internal regions within protein-coding exons, add another layer of complexity to the alternative splicing landscape (Marquez <i>et al</i>., <span>2015</span>; Staiger &amp; Simpson, <span>2015</span>).</p>\n<p>The spliceosome ensures the accurate recognition of different pre-mRNA regions and intron removal, aided by numerous proteins. Among these proteins, two key groups stand out: serine/arginine-rich (SR) proteins and heterogeneous nuclear ribonucleoproteins (hnRNPs; Wachter <i>et al</i>., <span>2012</span>). Serine/arginine-rich proteins interact with the pre-mRNA and spliceosomal components, guiding spliceosome assembly at specific splice sites (Shepard &amp; Hertel, <span>2009</span>). They contain one or two <i>N</i>-terminal RNA recognition motifs (RRMs), the most prevalent RNA-binding domain, and a C-terminal arginine/serine (RS) region enriched in arginine/serine dipeptides, which engages primarily in protein–protein interactions but also contributes to RNA recognition. By interacting with the spliceosomal machinery, SR proteins modulate splice site selection, contributing to mRNA isoform diversity. Beyond splicing, SR proteins influence transcription (Lin <i>et al</i>., <span>2008</span>; Ji <i>et al</i>., <span>2013</span>), polyadenylation (Schwich <i>et al</i>., <span>2021</span>), mRNA export (Müller-McNicoll <i>et al</i>., <span>2016</span>; Botti <i>et al</i>., <span>2017</span>), translation (Sanford <i>et al</i>., <span>2004</span>) among other processes. However, most knowledge about SR protein functions comes from animal studies.</p>\n<p>In plants, the SR protein family has expanded remarkably, with <i>Arabidopsis thaliana</i> possessing 18 SR proteins classified into six subfamilies. Ten are plant-specific, divided into RS, RS2Z, and SCL subfamilies based on their domain organization. The remaining eight are similar to mammalian SR proteins SF2/ASF/SRSF1, 9G8/SRSF7, and SC35/SRSF2 and belong to SR, RSZ, and SC subfamilies, respectively (Kalyna &amp; Barta, <span>2004</span>; Barta <i>et al</i>., <span>2008</span>, <span>2010</span>; Duque, <span>2011</span>; Richardson <i>et al</i>., <span>2011</span>). Arabidopsis also has two SR-like proteins: SR45 and SR45a. These proteins participate in constitutive and alternative splicing and play roles in mRNA export, stability, translation, transcriptional elongation, and cell cycle regulation (Jin, <span>2022</span>). Several SR proteins contribute to plant development and abiotic stress responses (Jin, <span>2022</span>), but their <i>in vivo</i> targets and regulatory networks remain less characterized (Mateos &amp; Staiger, <span>2023</span>). So far, RNA immunoprecipitation (RIP) followed by RNA sequencing (RNA-seq) identified over 4000 RNAs associated with SR45 in Arabidopsis seedlings (Xing <i>et al</i>., <span>2015</span>) and 1812 in inflorescences (Zhang <i>et al</i>., <span>2017</span>). Recently, tomato RS2Z35 and RS2Z36 were shown to bind to transcripts of over 5000 genes, including the heat shock transcription factor (TF) and many transcripts that undergo heat shock-sensitive alternative splicing, preferentially binding purine-rich RNA motifs (Rosenkranz <i>et al</i>., <span>2024</span>).</p>\n<p>At-RS31 (AT3G61860), a plant-specific SR protein in the RS subfamily, may regulate unique plant functions, although its exact roles are unclear. It has two <i>N</i>-terminal RRMs and the RS region, specific to this subfamily (Supporting Information Fig. S1a; Lopato <i>et al</i>., <span>1996</span>). At-RS31 interacts with SR and SR-like proteins and spliceosome components, suggesting a role in pre-mRNA splicing (Lopato <i>et al</i>., <span>2002</span>; Lorkovic <i>et al</i>., <span>2005</span>; Altmann <i>et al</i>., <span>2020</span>). Its ability to stimulate splicing in SR protein-deficient HeLa cell S100 extracts further supports this role (Lopato <i>et al</i>., <span>1996</span>).</p>\n<p><i>At-RS31</i> undergoes alternative splicing, producing four transcript isoforms: mRNA1-4 (Lopato <i>et al</i>., <span>1996</span>; Fig. S1b,c). The shortest isoform, mRNA1, arises from excision of the entire intron 2 and encodes the SR protein. This whole intron is retained in mRNA4. mRNA3 uses a proximal 3′ splice site in intron 2, while mRNA2 arises either from the removal of a small intron in mRNA3 or from the inclusion of a cassette exon compared with mRNA1. mRNA2–4 contain premature termination codons (PTCs). Only mRNA2 is sensitive to nonsense-mediated mRNA decay (NMD), likely due to nuclear retention of mRNA3 and mRNA4 (Kalyna <i>et al</i>., <span>2012</span>; Petrillo <i>et al</i>., <span>2014</span>).</p>\n<p>The ratio of <i>At-RS31</i> isoforms varies with tissue type, developmental stage, and environmental stimuli, such as bacterial flagellin, cold, or red light (Lopato <i>et al</i>., <span>1996</span>; Palusa <i>et al</i>., <span>2007</span>; Tognacca <i>et al</i>., <span>2019</span>; Bazin <i>et al</i>., <span>2020</span>). The proportion of mRNA1 fluctuates in response to light, increasing in light and decreasing in darkness, a response mediated by chloroplast retrograde signalling, affecting even nonphotosynthetic root cells lacking chloroplasts; sugars, mitochondrial function, and the Target of Rapamycin (TOR) pathway are key to this effect (Petrillo <i>et al</i>., <span>2014</span>; Riegler <i>et al</i>., <span>2021</span>). The conserved alternative splicing pattern of <i>At-RS31</i> across diverse plant species, from green algae to flowering plants, underscores its biological significance (Iida &amp; Go, <span>2006</span>; Kalyna <i>et al</i>., <span>2006</span>).</p>\n<p>Despite the identification of many factors regulating <i>At-RS31</i> alternative splicing, hinting at its potential roles in several plant biological processes, its downstream targets remain unknown. Since SR proteins influence alternative splicing in a concentration-dependent manner (Mayeda <i>et al</i>., <span>1992</span>) and given the dynamic modulation of <i>At-RS31</i> in response to various environmental and developmental signals, we hypothesize that its expression levels significantly impact the transcriptome. To identify direct targets of At-RS31, we performed <i>in vivo</i> individual-nucleotide resolution crosslinking and immunoprecipitation (iCLIP; Konig <i>et al</i>., <span>2010</span>; Hafner <i>et al</i>., <span>2021</span>) followed by <i>in vitro</i> RNAcompete validation (Ray <i>et al</i>., <span>2013</span>, <span>2017</span>). Additionally, we performed transcriptome profiling in <i>rs31-1</i> mutant plants and plants constitutively overexpressing At-RS31 (Petrillo <i>et al</i>., <span>2014</span>). By identifying At-RS31 direct targets through iCLIP and transcripts that are differentially alternatively spliced in response to altered At-RS31 levels, we gain insights into the downstream processes controlled by At-RS31.</p>","PeriodicalId":214,"journal":{"name":"New Phytologist","volume":"56 1","pages":""},"PeriodicalIF":8.3000,"publicationDate":"2025-05-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"New Phytologist","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1111/nph.70221","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Introduction

Gene expression in eukaryotes involves multiple regulatory layers. Following transcription, nascent RNAs undergo processing steps, including capping, splicing, polyadenylation, and chemical modification, to produce mature mRNAs (Yang et al., 2021). Splicing removes introns from pre-mRNA and joins exons to generate the mature transcripts (Gilbert, 1978). Although splicing is a highly regulated process ensuring specificity, it also shows remarkable plasticity. The spliceosome, the cellular machinery responsible for splicing, can recognize alternative splice sites, enabling a single gene to produce multiple transcript variants via alternative splicing.

In plants, 40–70% of intron-containing genes undergo alternative splicing, underscoring its fundamental role in regulating gene expression during development and environmental responses (Filichkin et al., 2010; Lu et al., 2010; Marquez et al., 2012; Chamala et al., 2015). Alternative splicing not only produces diverse transcripts leading to different proteins but also generates noncoding isoforms, which may be rapidly degraded or remain stable, thus fine-tuning the total protein levels produced by a gene (Kalyna et al., 2012; Petrillo, 2023). Different types of alternative splicing events, such as exon skipping (ES), intron retention, and usage of alternative 5′ and 3′ splice sites, generate transcript diversity. While ES is common in animals, intron retention is most frequent in plants. Retained intron (RI) transcripts often remain in the nucleus, regulating protein levels during stress or developmental transitions (Kalyna et al., 2012; Marquez et al., 2012; Yap et al., 2012; Boothby et al., 2013; Leviatan et al., 2013; Braunschweig et al., 2014; Gohring et al., 2014; Boutz et al., 2015). Furthermore, exitrons (EIs), alternatively spliced internal regions within protein-coding exons, add another layer of complexity to the alternative splicing landscape (Marquez et al., 2015; Staiger & Simpson, 2015).

The spliceosome ensures the accurate recognition of different pre-mRNA regions and intron removal, aided by numerous proteins. Among these proteins, two key groups stand out: serine/arginine-rich (SR) proteins and heterogeneous nuclear ribonucleoproteins (hnRNPs; Wachter et al., 2012). Serine/arginine-rich proteins interact with the pre-mRNA and spliceosomal components, guiding spliceosome assembly at specific splice sites (Shepard & Hertel, 2009). They contain one or two N-terminal RNA recognition motifs (RRMs), the most prevalent RNA-binding domain, and a C-terminal arginine/serine (RS) region enriched in arginine/serine dipeptides, which engages primarily in protein–protein interactions but also contributes to RNA recognition. By interacting with the spliceosomal machinery, SR proteins modulate splice site selection, contributing to mRNA isoform diversity. Beyond splicing, SR proteins influence transcription (Lin et al., 2008; Ji et al., 2013), polyadenylation (Schwich et al., 2021), mRNA export (Müller-McNicoll et al., 2016; Botti et al., 2017), translation (Sanford et al., 2004) among other processes. However, most knowledge about SR protein functions comes from animal studies.

In plants, the SR protein family has expanded remarkably, with Arabidopsis thaliana possessing 18 SR proteins classified into six subfamilies. Ten are plant-specific, divided into RS, RS2Z, and SCL subfamilies based on their domain organization. The remaining eight are similar to mammalian SR proteins SF2/ASF/SRSF1, 9G8/SRSF7, and SC35/SRSF2 and belong to SR, RSZ, and SC subfamilies, respectively (Kalyna & Barta, 2004; Barta et al., 2008, 2010; Duque, 2011; Richardson et al., 2011). Arabidopsis also has two SR-like proteins: SR45 and SR45a. These proteins participate in constitutive and alternative splicing and play roles in mRNA export, stability, translation, transcriptional elongation, and cell cycle regulation (Jin, 2022). Several SR proteins contribute to plant development and abiotic stress responses (Jin, 2022), but their in vivo targets and regulatory networks remain less characterized (Mateos & Staiger, 2023). So far, RNA immunoprecipitation (RIP) followed by RNA sequencing (RNA-seq) identified over 4000 RNAs associated with SR45 in Arabidopsis seedlings (Xing et al., 2015) and 1812 in inflorescences (Zhang et al., 2017). Recently, tomato RS2Z35 and RS2Z36 were shown to bind to transcripts of over 5000 genes, including the heat shock transcription factor (TF) and many transcripts that undergo heat shock-sensitive alternative splicing, preferentially binding purine-rich RNA motifs (Rosenkranz et al., 2024).

At-RS31 (AT3G61860), a plant-specific SR protein in the RS subfamily, may regulate unique plant functions, although its exact roles are unclear. It has two N-terminal RRMs and the RS region, specific to this subfamily (Supporting Information Fig. S1a; Lopato et al., 1996). At-RS31 interacts with SR and SR-like proteins and spliceosome components, suggesting a role in pre-mRNA splicing (Lopato et al., 2002; Lorkovic et al., 2005; Altmann et al., 2020). Its ability to stimulate splicing in SR protein-deficient HeLa cell S100 extracts further supports this role (Lopato et al., 1996).

At-RS31 undergoes alternative splicing, producing four transcript isoforms: mRNA1-4 (Lopato et al., 1996; Fig. S1b,c). The shortest isoform, mRNA1, arises from excision of the entire intron 2 and encodes the SR protein. This whole intron is retained in mRNA4. mRNA3 uses a proximal 3′ splice site in intron 2, while mRNA2 arises either from the removal of a small intron in mRNA3 or from the inclusion of a cassette exon compared with mRNA1. mRNA2–4 contain premature termination codons (PTCs). Only mRNA2 is sensitive to nonsense-mediated mRNA decay (NMD), likely due to nuclear retention of mRNA3 and mRNA4 (Kalyna et al., 2012; Petrillo et al., 2014).

The ratio of At-RS31 isoforms varies with tissue type, developmental stage, and environmental stimuli, such as bacterial flagellin, cold, or red light (Lopato et al., 1996; Palusa et al., 2007; Tognacca et al., 2019; Bazin et al., 2020). The proportion of mRNA1 fluctuates in response to light, increasing in light and decreasing in darkness, a response mediated by chloroplast retrograde signalling, affecting even nonphotosynthetic root cells lacking chloroplasts; sugars, mitochondrial function, and the Target of Rapamycin (TOR) pathway are key to this effect (Petrillo et al., 2014; Riegler et al., 2021). The conserved alternative splicing pattern of At-RS31 across diverse plant species, from green algae to flowering plants, underscores its biological significance (Iida & Go, 2006; Kalyna et al., 2006).

Despite the identification of many factors regulating At-RS31 alternative splicing, hinting at its potential roles in several plant biological processes, its downstream targets remain unknown. Since SR proteins influence alternative splicing in a concentration-dependent manner (Mayeda et al., 1992) and given the dynamic modulation of At-RS31 in response to various environmental and developmental signals, we hypothesize that its expression levels significantly impact the transcriptome. To identify direct targets of At-RS31, we performed in vivo individual-nucleotide resolution crosslinking and immunoprecipitation (iCLIP; Konig et al., 2010; Hafner et al., 2021) followed by in vitro RNAcompete validation (Ray et al., 2013, 2017). Additionally, we performed transcriptome profiling in rs31-1 mutant plants and plants constitutively overexpressing At-RS31 (Petrillo et al., 2014). By identifying At-RS31 direct targets through iCLIP and transcripts that are differentially alternatively spliced in response to altered At-RS31 levels, we gain insights into the downstream processes controlled by At-RS31.

At-RS31协调剪接因子的分层交叉调节,并将选择性剪接与TOR-ABA途径整合在一起
真核生物的基因表达涉及多个调控层。转录后,新生rna会经历包括盖帽、剪接、聚腺苷酸化和化学修饰在内的加工步骤,以产生成熟的mrna (Yang et al., 2021)。剪接从pre-mRNA中去除内含子,并连接外显子以产生成熟的转录本(Gilbert, 1978)。虽然剪接是一个高度调控的过程,确保了特异性,但它也表现出显著的可塑性。剪接体是负责剪接的细胞机器,它可以识别可选择的剪接位点,使单个基因能够通过可选择的剪接产生多个转录物变体。在植物中,40-70%含内含子的基因进行选择性剪接,强调了其在发育和环境响应过程中调节基因表达的基本作用(Filichkin et al., 2010;Lu et al., 2010;Marquez et al., 2012;Chamala et al., 2015)。选择性剪接不仅产生多种转录本,导致不同的蛋白质,而且还产生非编码亚型,这些亚型可能会迅速降解或保持稳定,从而微调基因产生的总蛋白质水平(Kalyna et al., 2012;Petrillo, 2023)。不同类型的备选剪接事件,如外显子跳变(ES)、内含子保留和备选5 ‘和3 ’剪接位点的使用,产生转录本多样性。虽然ES在动物中很常见,但内含子保留在植物中最为常见。保留的内含子(RI)转录本通常留在细胞核中,在应激或发育转变期间调节蛋白质水平(Kalyna et al., 2012;Marquez et al., 2012;Yap等,2012;Boothby et al., 2013;利维坦等人,2013;Braunschweig et al., 2014;Gohring et al., 2014;Boutz et al., 2015)。此外,外显子(EIs),即蛋白质编码外显子内的可选剪接区域,为可选剪接景观增加了另一层复杂性(Marquez et al., 2015;小马,辛普森,2015)。剪接体确保准确识别不同的前mrna区域和内含子去除,在许多蛋白质的帮助下。在这些蛋白质中,有两种关键的蛋白质群非常突出:富含丝氨酸/精氨酸(SR)的蛋白质和异质核核糖核蛋白(hnRNPs);Wachter et al., 2012)。富含丝氨酸/精氨酸的蛋白与前mrna和剪接体组分相互作用,引导剪接体在特定剪接位点组装(Shepard &amp;赫特尔,2009)。它们含有一个或两个n端RNA识别基序(rrm),这是最普遍的RNA结合结构域,以及一个富含精氨酸/丝氨酸二肽的c端精氨酸/丝氨酸(RS)区域,该区域主要参与蛋白质-蛋白质相互作用,但也有助于RNA识别。SR蛋白通过与剪接体机制相互作用,调节剪接位点选择,促进mRNA异构体多样性。除了剪接,SR蛋白还影响转录(Lin et al., 2008;Ji等人,2013),聚腺苷化(Schwich等人,2021),mRNA输出(miller - mcnicoll等人,2016;Botti et al., 2017),翻译(Sanford et al., 2004)等过程。然而,大多数关于SR蛋白功能的知识来自动物研究。在植物中,SR蛋白家族已经显著扩大,拟南芥拥有18个SR蛋白,被划分为6个亚家族。其中10种是植物特异性的,根据它们的结构域组织分为RS、RS2Z和SCL亚科。其余8个与哺乳动物SR蛋白SF2/ASF/SRSF1、9G8/SRSF7和SC35/SRSF2相似,分别属于SR、RSZ和SC亚家族(Kalyna &amp;Barta, 2004;Barta et al., 2008, 2010;Duque, 2011;Richardson et al., 2011)。拟南芥也有两个类似sr的蛋白:SR45和SR45a。这些蛋白参与组成剪接和选择性剪接,并在mRNA输出、稳定性、翻译、转录延伸和细胞周期调节中发挥作用(Jin, 2022)。一些SR蛋白参与植物发育和非生物胁迫反应(Jin, 2022),但它们的体内靶点和调控网络仍然不太清楚(Mateos &amp;小马,2023)。到目前为止,RNA免疫沉淀(RIP)和RNA测序(RNA-seq)在拟南芥幼苗(Xing et al., 2015)和花序(Zhang et al., 2017)中鉴定了超过4000个与SR45相关的RNA。最近,番茄RS2Z35和RS2Z36被证明可以结合超过5000个基因的转录本,包括热休克转录因子(TF)和许多进行热休克敏感的选择性剪接的转录本,优先结合富含嘌呤的RNA基序(Rosenkranz et al., 2024)。At-RS31 (AT3G61860)是RS亚家族中的一种植物特异性SR蛋白,可能调节植物的独特功能,但其确切作用尚不清楚。它有两个n端rrm和RS区域,特异于这个亚族(支持信息图S1a;Lopato et al., 1996)。 At-RS31与SR和SR样蛋白及剪接体组分相互作用,提示在mrna前剪接中起作用(Lopato等,2002;Lorkovic et al., 2005;Altmann et al., 2020)。其刺激SR蛋白缺乏的HeLa细胞S100提取物剪接的能力进一步支持了这一作用(Lopato et al., 1996)。At-RS31经历选择性剪接,产生四种转录异构体:mrna - 1-4 (Lopato et al., 1996;图印地c)。最短的同工异构体,mRNA1,产生于整个内含子2的切除并编码SR蛋白。整个内含子保留在mRNA4中。mRNA3使用内含子2的近端3 '剪接位点,而与mRNA1相比,mRNA2是通过去除mRNA3中的一个小内含子或包含一个盒式外显子产生的。mrna - 4含有过早终止密码子(ptc)。只有mRNA2对无义介导的mRNA衰变(NMD)敏感,这可能是由于mRNA3和mRNA4的核保留(Kalyna et al., 2012;Petrillo et al., 2014)。At-RS31同种异构体的比例随组织类型、发育阶段和环境刺激(如细菌鞭毛、寒冷或红光)而变化(Lopato等,1996;Palusa et al., 2007;Tognacca等人,2019;Bazin et al., 2020)。mRNA1的比例随光照变化而波动,在光照下增加,在黑暗中减少,这是一种由叶绿体逆行信号介导的反应,甚至影响缺乏叶绿体的非光合根细胞;糖、线粒体功能和雷帕霉素靶蛋白(TOR)途径是这种作用的关键(Petrillo等人,2014;Riegler et al., 2021)。At-RS31在多种植物物种(从绿藻到开花植物)中保守的选择性剪接模式强调了其生物学意义(Iida &amp;去,2006;Kalyna et al., 2006)。尽管发现了许多调节at - rs31选择性剪接的因子,暗示其在几种植物生物学过程中的潜在作用,但其下游靶点仍不清楚。由于SR蛋白以浓度依赖的方式影响选择性剪接(Mayeda et al., 1992),并且考虑到At-RS31在响应各种环境和发育信号时的动态调节,我们假设其表达水平显著影响转录组。为了确定At-RS31的直接靶点,我们在体内进行了个体核苷酸分辨率交联和免疫沉淀(iCLIP;Konig et al., 2010;Hafner等人,2021),然后进行体外rnaccompete验证(Ray等人,2013,2017)。此外,我们对rs31-1突变植物和组成型过表达At-RS31的植物进行了转录组分析(Petrillo et al., 2014)。通过iCLIP识别At-RS31的直接靶点,以及响应At-RS31水平改变而差异剪接的转录本,我们深入了解了At-RS31控制的下游过程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
New Phytologist
New Phytologist 生物-植物科学
自引率
5.30%
发文量
728
期刊介绍: New Phytologist is an international electronic journal published 24 times a year. It is owned by the New Phytologist Foundation, a non-profit-making charitable organization dedicated to promoting plant science. The journal publishes excellent, novel, rigorous, and timely research and scholarship in plant science and its applications. The articles cover topics in five sections: Physiology & Development, Environment, Interaction, Evolution, and Transformative Plant Biotechnology. These sections encompass intracellular processes, global environmental change, and encourage cross-disciplinary approaches. The journal recognizes the use of techniques from molecular and cell biology, functional genomics, modeling, and system-based approaches in plant science. Abstracting and Indexing Information for New Phytologist includes Academic Search, AgBiotech News & Information, Agroforestry Abstracts, Biochemistry & Biophysics Citation Index, Botanical Pesticides, CAB Abstracts®, Environment Index, Global Health, and Plant Breeding Abstracts, and others.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信