Decoding Dual-Ion Synergy in AlCl3/ZnCl2 Hydrates: An Atomic "Interaction-Penetration-Dispersion" Mechanism for Ambient Cellulose Valorization.

IF 15.8 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
ACS Nano Pub Date : 2025-05-26 DOI:10.1021/acsnano.5c04142
Xin Li,Zhonghao Chen,Xi Guan,Huicong Jiang,Ming Yan,Lili Zhang,Jinxia Ma,Lei Wang,Zhiguo Wang
{"title":"Decoding Dual-Ion Synergy in AlCl3/ZnCl2 Hydrates: An Atomic \"Interaction-Penetration-Dispersion\" Mechanism for Ambient Cellulose Valorization.","authors":"Xin Li,Zhonghao Chen,Xi Guan,Huicong Jiang,Ming Yan,Lili Zhang,Jinxia Ma,Lei Wang,Zhiguo Wang","doi":"10.1021/acsnano.5c04142","DOIUrl":null,"url":null,"abstract":"While the inorganic salt systems have demonstrated ambient cellulose dissolution, the atomic-scale mechanisms governing their unparalleled efficiency and sustainability remain unresolved. Here, we advance the typical inorganic salt solvent of the AlCl3/ZnCl2/H2O system by unraveling the hierarchical \"interaction-penetration-dispersion\" mechanism through multidimensional characterization and simulations. High-charge-density Al3+ ions initiate hydrogen bond disruption via strong electrostatic interactions (interaction), while their small hydrated radius enables ultrafast fibril infiltration (penetration). Concurrently, Zn2+ ions stabilize dissolved chains through solvation shielding (dispersion), achieving complete dissolution of cellulose within 10 min, 4-fold faster than single-ion ZnCl2 systems. Density functional theory confirms thermodynamic spontaneity (ΔG = -0.59 eV), and life cycle assessment demonstrates an 85% lower carbon footprint of 2.94 kg CO2-eq/kg of bioplastics compared to polyvinyl fluoride plastics. The regenerated cellulose films exhibit exceptional mechanical strength (94.9 MPa) and rapid biodegradability (100% degradation in soil within 20 days), addressing both performance and environmental demands. We establish universal design principles for green solvent engineering by correlating hydration-regulated ionic ratios with dissolution kinetics. This work bridges the gap between fundamental ion-cellulose dynamics and scalable production of multifunctional materials, including conductive hydrogels (41.72 mS/cm), ultralight aerogels (829.4 kPa), and flexible fibers, propelling sustainable applications in flexible electronics, eco-packaging, and eco-textiles.","PeriodicalId":21,"journal":{"name":"ACS Nano","volume":"33 1","pages":""},"PeriodicalIF":15.8000,"publicationDate":"2025-05-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Nano","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsnano.5c04142","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

While the inorganic salt systems have demonstrated ambient cellulose dissolution, the atomic-scale mechanisms governing their unparalleled efficiency and sustainability remain unresolved. Here, we advance the typical inorganic salt solvent of the AlCl3/ZnCl2/H2O system by unraveling the hierarchical "interaction-penetration-dispersion" mechanism through multidimensional characterization and simulations. High-charge-density Al3+ ions initiate hydrogen bond disruption via strong electrostatic interactions (interaction), while their small hydrated radius enables ultrafast fibril infiltration (penetration). Concurrently, Zn2+ ions stabilize dissolved chains through solvation shielding (dispersion), achieving complete dissolution of cellulose within 10 min, 4-fold faster than single-ion ZnCl2 systems. Density functional theory confirms thermodynamic spontaneity (ΔG = -0.59 eV), and life cycle assessment demonstrates an 85% lower carbon footprint of 2.94 kg CO2-eq/kg of bioplastics compared to polyvinyl fluoride plastics. The regenerated cellulose films exhibit exceptional mechanical strength (94.9 MPa) and rapid biodegradability (100% degradation in soil within 20 days), addressing both performance and environmental demands. We establish universal design principles for green solvent engineering by correlating hydration-regulated ionic ratios with dissolution kinetics. This work bridges the gap between fundamental ion-cellulose dynamics and scalable production of multifunctional materials, including conductive hydrogels (41.72 mS/cm), ultralight aerogels (829.4 kPa), and flexible fibers, propelling sustainable applications in flexible electronics, eco-packaging, and eco-textiles.
解码AlCl3/ZnCl2水合物中的双离子协同作用:环境纤维素增值的原子“相互作用-渗透-分散”机制。
虽然无机盐系统已经证明了环境纤维素溶解,但控制其无与伦比的效率和可持续性的原子尺度机制仍未解决。本文通过多维表征和模拟,揭示了AlCl3/ZnCl2/H2O体系的“相互作用-渗透-分散”层次化机制,提出了典型的无机盐溶剂AlCl3/ZnCl2/H2O体系。高电荷密度的Al3+离子通过强静电相互作用(相互作用)引发氢键破坏,而它们的小水合半径使超快纤维渗透(渗透)成为可能。同时,Zn2+离子通过溶剂化屏蔽(分散)稳定溶解链,在10分钟内实现纤维素的完全溶解,比单离子ZnCl2体系快4倍。密度泛函理论证实了热力学自发性(ΔG = -0.59 eV),生命周期评估表明,与聚氯乙烯塑料相比,生物塑料的碳足迹降低了85%,为2.94千克二氧化碳当量/千克。再生的纤维素薄膜具有优异的机械强度(94.9 MPa)和快速的生物降解性(在土壤中20天内降解100%),满足了性能和环境要求。通过将水化调节的离子比与溶解动力学联系起来,建立了绿色溶剂工程的通用设计原则。这项工作弥补了基本的离子纤维素动力学和可扩展的多功能材料生产之间的差距,包括导电水凝胶(41.72 mS/cm)、超轻气凝胶(829.4 kPa)和柔性纤维,推动了柔性电子、生态包装和生态纺织品的可持续应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Nano
ACS Nano 工程技术-材料科学:综合
CiteScore
26.00
自引率
4.10%
发文量
1627
审稿时长
1.7 months
期刊介绍: ACS Nano, published monthly, serves as an international forum for comprehensive articles on nanoscience and nanotechnology research at the intersections of chemistry, biology, materials science, physics, and engineering. The journal fosters communication among scientists in these communities, facilitating collaboration, new research opportunities, and advancements through discoveries. ACS Nano covers synthesis, assembly, characterization, theory, and simulation of nanostructures, nanobiotechnology, nanofabrication, methods and tools for nanoscience and nanotechnology, and self- and directed-assembly. Alongside original research articles, it offers thorough reviews, perspectives on cutting-edge research, and discussions envisioning the future of nanoscience and nanotechnology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信