{"title":"Next-Generation Wearable/Implanted Sensors Based on Fiber Optic and Its Application: From in Vitro to in Vivo.","authors":"Dongrui Tu,Yiwei Tang,Yiyang Huang,Minyi Tang,Linrong Li,Yu Li,Mengdi Lu,Zewei Luo,Yixiang Duan","doi":"10.1021/acssensors.5c00044","DOIUrl":null,"url":null,"abstract":"Wearable sensors are significant for health status, diagnosing diseases, and adjusting postoperative interventions to monitor the physiological information on humans continuously. The first generation of wearable sensors has gained rapid growth in medical health for monitoring physical parameters. Recently, emerging fiber optics (FOs) with small diameters have been attached to desired locations of the human epidermis or fabrics for monitoring physiological change activity. Because of its strong soft tissue affinity and excellent biocompatibility, FO has been injected into human skin, blood vessels, and the brain for sensing of biological parameters. The detection of FO has been extended, ranging from physical parameters to chemical and biological parameters. Also, the application of FO has shifted from wearable sensors in vitro to implanted sensors in vivo. Thus, FO is expected to launch a milestone contribution to next-generation wearable/implanted sensors. Based on the success, this review focuses on wearable and implantable FO-based sensors. The three main design strategies of single point, distributed, and FO array were profiled. The significant application of the detection of the physical, chemical, and biological parameters was discussed. The opportunities and challenges of wearable/implantable FO-based sensors were highlighted to promote their development for commercial applications.","PeriodicalId":24,"journal":{"name":"ACS Sensors","volume":"34 1","pages":""},"PeriodicalIF":8.2000,"publicationDate":"2025-05-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Sensors","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acssensors.5c00044","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Wearable sensors are significant for health status, diagnosing diseases, and adjusting postoperative interventions to monitor the physiological information on humans continuously. The first generation of wearable sensors has gained rapid growth in medical health for monitoring physical parameters. Recently, emerging fiber optics (FOs) with small diameters have been attached to desired locations of the human epidermis or fabrics for monitoring physiological change activity. Because of its strong soft tissue affinity and excellent biocompatibility, FO has been injected into human skin, blood vessels, and the brain for sensing of biological parameters. The detection of FO has been extended, ranging from physical parameters to chemical and biological parameters. Also, the application of FO has shifted from wearable sensors in vitro to implanted sensors in vivo. Thus, FO is expected to launch a milestone contribution to next-generation wearable/implanted sensors. Based on the success, this review focuses on wearable and implantable FO-based sensors. The three main design strategies of single point, distributed, and FO array were profiled. The significant application of the detection of the physical, chemical, and biological parameters was discussed. The opportunities and challenges of wearable/implantable FO-based sensors were highlighted to promote their development for commercial applications.
期刊介绍:
ACS Sensors is a peer-reviewed research journal that focuses on the dissemination of new and original knowledge in the field of sensor science, particularly those that selectively sense chemical or biological species or processes. The journal covers a broad range of topics, including but not limited to biosensors, chemical sensors, gas sensors, intracellular sensors, single molecule sensors, cell chips, and microfluidic devices. It aims to publish articles that address conceptual advances in sensing technology applicable to various types of analytes or application papers that report on the use of existing sensing concepts in new ways or for new analytes.