Christopher J Fiscus,Jonás A Aguirre-Liguori,Garren R J Gaut,Brandon S Gaut
{"title":"Mutational load and adaptive variation are shaped by climate and species range dynamics in Vitis arizonica.","authors":"Christopher J Fiscus,Jonás A Aguirre-Liguori,Garren R J Gaut,Brandon S Gaut","doi":"10.1111/nph.70238","DOIUrl":null,"url":null,"abstract":"Genetic load can reduce fitness and hinder adaptation. While its genetic underpinnings are well established, the influence of environmental variation on genetic load is less well characterized, as is the relationship between genetic load and putatively adaptive genetic variation. This study examines the interplay among climate, species range dynamics, adaptive variation, and mutational load - a genomic measure of genetic load - in Vitis arizonica, a wild grape native to the American Southwest. We estimated mutational load and identified climate-associated adaptive genetic variants in 162 individuals across the species' range. Using a random forest model, we analyzed the relationship between mutational load, climate, and range shifts. Our findings linked mutational load to climatic variation, historical dispersion, and heterozygosity. Populations at the leading edge of range expansion harbored higher load and fewer putatively adaptive alleles associated with climate. Climate projections suggest that V. arizonica will expand its range by the end of the century, accompanied by a slight increase in mutational load at the population level. This study advances understanding of how environmental and geographic factors shape genetic load and adaptation, highlighting the need to integrate deleterious variation into broader models of species response to climate change.","PeriodicalId":214,"journal":{"name":"New Phytologist","volume":"44 1","pages":""},"PeriodicalIF":8.3000,"publicationDate":"2025-05-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"New Phytologist","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1111/nph.70238","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Genetic load can reduce fitness and hinder adaptation. While its genetic underpinnings are well established, the influence of environmental variation on genetic load is less well characterized, as is the relationship between genetic load and putatively adaptive genetic variation. This study examines the interplay among climate, species range dynamics, adaptive variation, and mutational load - a genomic measure of genetic load - in Vitis arizonica, a wild grape native to the American Southwest. We estimated mutational load and identified climate-associated adaptive genetic variants in 162 individuals across the species' range. Using a random forest model, we analyzed the relationship between mutational load, climate, and range shifts. Our findings linked mutational load to climatic variation, historical dispersion, and heterozygosity. Populations at the leading edge of range expansion harbored higher load and fewer putatively adaptive alleles associated with climate. Climate projections suggest that V. arizonica will expand its range by the end of the century, accompanied by a slight increase in mutational load at the population level. This study advances understanding of how environmental and geographic factors shape genetic load and adaptation, highlighting the need to integrate deleterious variation into broader models of species response to climate change.
期刊介绍:
New Phytologist is an international electronic journal published 24 times a year. It is owned by the New Phytologist Foundation, a non-profit-making charitable organization dedicated to promoting plant science. The journal publishes excellent, novel, rigorous, and timely research and scholarship in plant science and its applications. The articles cover topics in five sections: Physiology & Development, Environment, Interaction, Evolution, and Transformative Plant Biotechnology. These sections encompass intracellular processes, global environmental change, and encourage cross-disciplinary approaches. The journal recognizes the use of techniques from molecular and cell biology, functional genomics, modeling, and system-based approaches in plant science. Abstracting and Indexing Information for New Phytologist includes Academic Search, AgBiotech News & Information, Agroforestry Abstracts, Biochemistry & Biophysics Citation Index, Botanical Pesticides, CAB Abstracts®, Environment Index, Global Health, and Plant Breeding Abstracts, and others.