Blake D Fauskee,Li-Yaung Kuo,Tracy A Heath,Pei-Jun Xie,Kathleen M Pryer
{"title":"Comparative phylogenetic analyses of RNA editing in fern plastomes suggest possible adaptive innovations.","authors":"Blake D Fauskee,Li-Yaung Kuo,Tracy A Heath,Pei-Jun Xie,Kathleen M Pryer","doi":"10.1111/nph.70244","DOIUrl":null,"url":null,"abstract":"RNA editing in plant organelles is widely regarded as a neutral corrective mechanism, yet it persists as a complex, energetically costly process, requiring numerous nuclear-encoded pentatricopeptide repeat proteins. Ferns are the most diverse lineage of land plants that uniquely retain both cytidine-to-uridine (C-to-U) and uridine-to-cytidine (U-to-C) Berget RNA editing in their plastomes, offering a powerful system to investigate the evolutionary forces shaping both editing types. Two distantly related fern lineages - Hymenophyllaceae and Vittarioideae (Pteridaceae) - each containing sister sublineages with contrasting evolutionary rates, were selected for comparative analysis. Genomic and transcriptomic data were combined with bioinformatic and phylogenetic methods to identify RNA editing sites and investigate the evolutionary dynamics of both C-to-U and U-to-C editing in fern plastomes. Nonsynonymous edits were frequently lost, consistent with neutral evolution. By contrast, C-to-U edits at start codons and U-to-C edits at internal stop codons were evolutionarily conserved, displaying lower and more variable editing efficiencies that suggest these edits are regulated. C-to-U edits at start codons and U-to-C edits at internal stop codons are evolutionarily conserved and exhibit signatures of selective regulation, suggesting that they function as molecular checkpoints. These findings provide the strongest evidence to date that RNA editing in plants plays an adaptive role in modulating plastid gene expression.","PeriodicalId":214,"journal":{"name":"New Phytologist","volume":"23 1","pages":""},"PeriodicalIF":8.3000,"publicationDate":"2025-05-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"New Phytologist","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1111/nph.70244","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
RNA editing in plant organelles is widely regarded as a neutral corrective mechanism, yet it persists as a complex, energetically costly process, requiring numerous nuclear-encoded pentatricopeptide repeat proteins. Ferns are the most diverse lineage of land plants that uniquely retain both cytidine-to-uridine (C-to-U) and uridine-to-cytidine (U-to-C) Berget RNA editing in their plastomes, offering a powerful system to investigate the evolutionary forces shaping both editing types. Two distantly related fern lineages - Hymenophyllaceae and Vittarioideae (Pteridaceae) - each containing sister sublineages with contrasting evolutionary rates, were selected for comparative analysis. Genomic and transcriptomic data were combined with bioinformatic and phylogenetic methods to identify RNA editing sites and investigate the evolutionary dynamics of both C-to-U and U-to-C editing in fern plastomes. Nonsynonymous edits were frequently lost, consistent with neutral evolution. By contrast, C-to-U edits at start codons and U-to-C edits at internal stop codons were evolutionarily conserved, displaying lower and more variable editing efficiencies that suggest these edits are regulated. C-to-U edits at start codons and U-to-C edits at internal stop codons are evolutionarily conserved and exhibit signatures of selective regulation, suggesting that they function as molecular checkpoints. These findings provide the strongest evidence to date that RNA editing in plants plays an adaptive role in modulating plastid gene expression.
期刊介绍:
New Phytologist is an international electronic journal published 24 times a year. It is owned by the New Phytologist Foundation, a non-profit-making charitable organization dedicated to promoting plant science. The journal publishes excellent, novel, rigorous, and timely research and scholarship in plant science and its applications. The articles cover topics in five sections: Physiology & Development, Environment, Interaction, Evolution, and Transformative Plant Biotechnology. These sections encompass intracellular processes, global environmental change, and encourage cross-disciplinary approaches. The journal recognizes the use of techniques from molecular and cell biology, functional genomics, modeling, and system-based approaches in plant science. Abstracting and Indexing Information for New Phytologist includes Academic Search, AgBiotech News & Information, Agroforestry Abstracts, Biochemistry & Biophysics Citation Index, Botanical Pesticides, CAB Abstracts®, Environment Index, Global Health, and Plant Breeding Abstracts, and others.