Anna Wysocka, Natalia Kulik, Mahendra K Shukla, Monika Opatíková, Roman Kouřil, Philip J Jackson, Amanda A Brindley, Jan Janouškovec, Éva Kiss, Andrew Hitchcock, Josef Komenda, C Neil Hunter, Roman Sobotka
{"title":"High-light-inducible proteins control associations between chlorophyll synthase and the Photosystem II biogenesis factor Ycf39","authors":"Anna Wysocka, Natalia Kulik, Mahendra K Shukla, Monika Opatíková, Roman Kouřil, Philip J Jackson, Amanda A Brindley, Jan Janouškovec, Éva Kiss, Andrew Hitchcock, Josef Komenda, C Neil Hunter, Roman Sobotka","doi":"10.1093/plphys/kiaf213","DOIUrl":null,"url":null,"abstract":"The biogenesis of Photosystem II is a complicated process requiring numerous auxiliary factors to assist in all steps of its assembly. The cyanobacterial protein Ycf39 forms a stress-induced complex with two small chlorophyll-binding, High-light-inducible proteins C and D (HliC and HliD), and has been reported to participate in the insertion of chlorophyll molecules into the central D1 subunit of Photosystem II. However, how this process is organized remains unknown. Here, we show that Ycf39 and both HliC and HliD can form distinct complexes with chlorophyll synthase (ChlG) in the model cyanobacterium Synechocystis sp. PCC 6803. We isolated and characterized ChlG complexes from various strains grown under different conditions and provide a mechanistic view of the docking of Ycf39 to ChlG via HliD and the structural role of HliC. In the absence of stress, chlorophyll is produced by the ChlG-HliD2-ChlG complex, which is stabilized by chlorophyll and zeaxanthin molecules bound to the HliD homodimer. The switch to high light leads to stress pressure and greatly elevated synthesis of HliC, resulting in the replacement of HliD homodimers with HliC-HliD heterodimers. Unlike HliD, HliC cannot interact directly with ChlG or Ycf39. Therefore, the original ChlG-HliD2-ChlG complex is converted into a ChlG-HliD-HliC hetero-trimer that presumably binds transiently to Ycf39 and the nascent D1 polypeptide. We speculate that this molecular machinery promotes the delivery of chlorophyll to D1 upon high-light-induced chlorophyll deficiency. The HliD homodimers formed under standard, non-stress growth conditions and attached to ChlG could serve as an emergency chlorophyll reserve.","PeriodicalId":20101,"journal":{"name":"Plant Physiology","volume":"139 1","pages":""},"PeriodicalIF":6.5000,"publicationDate":"2025-05-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Physiology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/plphys/kiaf213","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
The biogenesis of Photosystem II is a complicated process requiring numerous auxiliary factors to assist in all steps of its assembly. The cyanobacterial protein Ycf39 forms a stress-induced complex with two small chlorophyll-binding, High-light-inducible proteins C and D (HliC and HliD), and has been reported to participate in the insertion of chlorophyll molecules into the central D1 subunit of Photosystem II. However, how this process is organized remains unknown. Here, we show that Ycf39 and both HliC and HliD can form distinct complexes with chlorophyll synthase (ChlG) in the model cyanobacterium Synechocystis sp. PCC 6803. We isolated and characterized ChlG complexes from various strains grown under different conditions and provide a mechanistic view of the docking of Ycf39 to ChlG via HliD and the structural role of HliC. In the absence of stress, chlorophyll is produced by the ChlG-HliD2-ChlG complex, which is stabilized by chlorophyll and zeaxanthin molecules bound to the HliD homodimer. The switch to high light leads to stress pressure and greatly elevated synthesis of HliC, resulting in the replacement of HliD homodimers with HliC-HliD heterodimers. Unlike HliD, HliC cannot interact directly with ChlG or Ycf39. Therefore, the original ChlG-HliD2-ChlG complex is converted into a ChlG-HliD-HliC hetero-trimer that presumably binds transiently to Ycf39 and the nascent D1 polypeptide. We speculate that this molecular machinery promotes the delivery of chlorophyll to D1 upon high-light-induced chlorophyll deficiency. The HliD homodimers formed under standard, non-stress growth conditions and attached to ChlG could serve as an emergency chlorophyll reserve.
期刊介绍:
Plant Physiology® is a distinguished and highly respected journal with a rich history dating back to its establishment in 1926. It stands as a leading international publication in the field of plant biology, covering a comprehensive range of topics from the molecular and structural aspects of plant life to systems biology and ecophysiology. Recognized as the most highly cited journal in plant sciences, Plant Physiology® is a testament to its commitment to excellence and the dissemination of groundbreaking research.
As the official publication of the American Society of Plant Biologists, Plant Physiology® upholds rigorous peer-review standards, ensuring that the scientific community receives the highest quality research. The journal releases 12 issues annually, providing a steady stream of new findings and insights to its readership.