Layered‐Spinel Heterogeneous Structure and Oxygen Vacancies Enable Superior Electrochemical Performance for Li‐Rich Cathodes

IF 16.1 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Pengkun Yang, Long Shang, Huimin Wang, Zhenhua Yan, Kai Zhang, Yixin Li, Jun Chen
{"title":"Layered‐Spinel Heterogeneous Structure and Oxygen Vacancies Enable Superior Electrochemical Performance for Li‐Rich Cathodes","authors":"Pengkun Yang, Long Shang, Huimin Wang, Zhenhua Yan, Kai Zhang, Yixin Li, Jun Chen","doi":"10.1002/anie.202501539","DOIUrl":null,"url":null,"abstract":"Lithium‐rich manganese‐based oxides (LRMOs) materials are considered to be the next‐generation cathode for high‐energy Li‐ion/metal batteries owing to their superior specific capacity, high operation voltage and low cost. However, the commercial application of LRMOs is constrained by the surface structure degradation and lattice oxygen release, resulting in low initial coulombic efficiency (ICE) and rapid voltage and capacity decay. Herein, we propose a facile sorbic acid‐assisted surface treatment strategy to construct homogeneous multifunctional interface layers composed of layered‐spinel heterogeneous structure and oxygen vacancies on the surface of LRMOs, which enhance the structure stability and improve the activity and reversibility of the anionic oxygen redox reactions. The multifunctional interfacial layers effectively suppress irreversible oxygen release and alleviate unfavorable layered‐spinel phase transformation. As a consequence, the treated LRMOs cathode displays improved ICE of 88.3%, high capacity retention rate (87.9% at 1 C after 150 cycles) and low voltage decay ratio (1.26 mV per cycle). These findings provide a valuable new idea to improve the comprehensive electrochemical performance of LRMOs through multi‐strategy synergistic interface engineering techniques.","PeriodicalId":125,"journal":{"name":"Angewandte Chemie International Edition","volume":"22 1","pages":""},"PeriodicalIF":16.1000,"publicationDate":"2025-05-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Angewandte Chemie International Edition","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/anie.202501539","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Lithium‐rich manganese‐based oxides (LRMOs) materials are considered to be the next‐generation cathode for high‐energy Li‐ion/metal batteries owing to their superior specific capacity, high operation voltage and low cost. However, the commercial application of LRMOs is constrained by the surface structure degradation and lattice oxygen release, resulting in low initial coulombic efficiency (ICE) and rapid voltage and capacity decay. Herein, we propose a facile sorbic acid‐assisted surface treatment strategy to construct homogeneous multifunctional interface layers composed of layered‐spinel heterogeneous structure and oxygen vacancies on the surface of LRMOs, which enhance the structure stability and improve the activity and reversibility of the anionic oxygen redox reactions. The multifunctional interfacial layers effectively suppress irreversible oxygen release and alleviate unfavorable layered‐spinel phase transformation. As a consequence, the treated LRMOs cathode displays improved ICE of 88.3%, high capacity retention rate (87.9% at 1 C after 150 cycles) and low voltage decay ratio (1.26 mV per cycle). These findings provide a valuable new idea to improve the comprehensive electrochemical performance of LRMOs through multi‐strategy synergistic interface engineering techniques.
层状尖晶石非均相结构和氧空位使富锂阴极具有优越的电化学性能
富锂锰基氧化物(LRMOs)材料因其优越的比容量、高工作电压和低成本而被认为是下一代高能锂离子/金属电池的正极材料。然而,LRMOs的商业应用受到表面结构退化和晶格氧释放的限制,导致初始库仑效率(ICE)低,电压和容量衰减迅速。在此,我们提出了一种简单的山梨酸辅助表面处理策略,在LRMOs表面构建由层状尖晶石非均相结构和氧空缺组成的均匀多功能界面层,增强了结构稳定性,提高了阴离子氧氧化还原反应的活性和可逆性。多功能界面层有效抑制不可逆氧释放,缓解层状尖晶石相变。因此,经过处理的LRMOs阴极显示出提高了88.3%的ICE,高容量保持率(150次循环后在1c下达到87.9%)和低电压衰减率(每循环1.26 mV)。这些发现为通过多策略协同界面工程技术提高LRMOs的综合电化学性能提供了有价值的新思路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
26.60
自引率
6.60%
发文量
3549
审稿时长
1.5 months
期刊介绍: Angewandte Chemie, a journal of the German Chemical Society (GDCh), maintains a leading position among scholarly journals in general chemistry with an impressive Impact Factor of 16.6 (2022 Journal Citation Reports, Clarivate, 2023). Published weekly in a reader-friendly format, it features new articles almost every day. Established in 1887, Angewandte Chemie is a prominent chemistry journal, offering a dynamic blend of Review-type articles, Highlights, Communications, and Research Articles on a weekly basis, making it unique in the field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信