Yuanxing Liu, Sahithi Srijana Akundi, Austin Braniff, Beatriz Dantas, Shayan S. Niknezhad, Yuhe Tian, Faisal Khan, Efstratios N. Pistikopoulos
{"title":"Process monitoring and safety‐informed control of a proton exchange membrane water electrolysis system","authors":"Yuanxing Liu, Sahithi Srijana Akundi, Austin Braniff, Beatriz Dantas, Shayan S. Niknezhad, Yuhe Tian, Faisal Khan, Efstratios N. Pistikopoulos","doi":"10.1002/aic.18909","DOIUrl":null,"url":null,"abstract":"This study provides an experimental validation of a multiple‐input multiple‐output (MIMO) model predictive control (MPC) strategy, coupled with dynamic risk modeling, to address two critical aspects of proton exchange membrane water electrolysis (PEMWE) operation: (i) process safety, by mitigating temperature imbalances, and (ii) system performance, through precise hydrogen production control. A cyber‐physical platform was developed for real‐time monitoring, state‐space modeling and validation, risk metrics analysis, control implementation, and visualization. Open‐loop experiments revealed limitations in managing thermal gradients, underscoring the need for feedback operating strategies. The proposed closed‐loop MPC approach achieved precise tracking of hydrogen production while maintaining safety by ensuring temperature stability. Moreover, the dynamic risk metrics show how thermal risk evolves with temperature and offer guidance for decision‐making. These findings demonstrate the effectiveness of MIMO MPC in enhancing the operational safety and efficiency of PEMWE systems, providing a foundation for scalable and sustainable hydrogen production.","PeriodicalId":120,"journal":{"name":"AIChE Journal","volume":"18 1","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2025-05-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"AIChE Journal","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/aic.18909","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0
Abstract
This study provides an experimental validation of a multiple‐input multiple‐output (MIMO) model predictive control (MPC) strategy, coupled with dynamic risk modeling, to address two critical aspects of proton exchange membrane water electrolysis (PEMWE) operation: (i) process safety, by mitigating temperature imbalances, and (ii) system performance, through precise hydrogen production control. A cyber‐physical platform was developed for real‐time monitoring, state‐space modeling and validation, risk metrics analysis, control implementation, and visualization. Open‐loop experiments revealed limitations in managing thermal gradients, underscoring the need for feedback operating strategies. The proposed closed‐loop MPC approach achieved precise tracking of hydrogen production while maintaining safety by ensuring temperature stability. Moreover, the dynamic risk metrics show how thermal risk evolves with temperature and offer guidance for decision‐making. These findings demonstrate the effectiveness of MIMO MPC in enhancing the operational safety and efficiency of PEMWE systems, providing a foundation for scalable and sustainable hydrogen production.
期刊介绍:
The AIChE Journal is the premier research monthly in chemical engineering and related fields. This peer-reviewed and broad-based journal reports on the most important and latest technological advances in core areas of chemical engineering as well as in other relevant engineering disciplines. To keep abreast with the progressive outlook of the profession, the Journal has been expanding the scope of its editorial contents to include such fast developing areas as biotechnology, electrochemical engineering, and environmental engineering.
The AIChE Journal is indeed the global communications vehicle for the world-renowned researchers to exchange top-notch research findings with one another. Subscribing to the AIChE Journal is like having immediate access to nine topical journals in the field.
Articles are categorized according to the following topical areas:
Biomolecular Engineering, Bioengineering, Biochemicals, Biofuels, and Food
Inorganic Materials: Synthesis and Processing
Particle Technology and Fluidization
Process Systems Engineering
Reaction Engineering, Kinetics and Catalysis
Separations: Materials, Devices and Processes
Soft Materials: Synthesis, Processing and Products
Thermodynamics and Molecular-Scale Phenomena
Transport Phenomena and Fluid Mechanics.