Lithium extraction from salt‐lake brines using dicationic ionic liquids: ePC‐SAFT modeling and molecular mechanisms

IF 3.5 3区 工程技术 Q2 ENGINEERING, CHEMICAL
AIChE Journal Pub Date : 2025-05-26 DOI:10.1002/aic.18907
Gangqiang Yu, Yufeng Li, Xinhe Zhang, Iman Bahrabadi Jovein, Paul Figiel, Biaohua Chen, Yuanhui Ji, Gabriele Sadowski, Christoph Held
{"title":"Lithium extraction from salt‐lake brines using dicationic ionic liquids: ePC‐SAFT modeling and molecular mechanisms","authors":"Gangqiang Yu, Yufeng Li, Xinhe Zhang, Iman Bahrabadi Jovein, Paul Figiel, Biaohua Chen, Yuanhui Ji, Gabriele Sadowski, Christoph Held","doi":"10.1002/aic.18907","DOIUrl":null,"url":null,"abstract":"This work proposes a novel strategy for enhancing Li<jats:sup>+</jats:sup> extraction from salt‐lake brines with the high Mg<jats:sup>2+</jats:sup>/Li<jats:sup>+</jats:sup> ratio using dicationic ionic liquid (DIL)‐based extractants. The ternary mixture of the DIL [DOMIM][Tf<jats:sub>2</jats:sub>N]<jats:sub>2</jats:sub>, tributyl phosphate (TBP), and dichloromethane (DCM) as a diluent achieved a higher single‐stage Li<jats:sup>+</jats:sup> extraction efficiency (86.40%) and separation selectivity of Li<jats:sup>+</jats:sup>/Mg<jats:sup>2+</jats:sup> (302.37) compared with the ternary mixture based on monocationic IL [OMIM][Tf<jats:sub>2</jats:sub>N] instead of the DIL. The high Li<jats:sup>+</jats:sup> extraction performance could be maintained over five‐cycle regeneration. Electrolyte perturbed‐chain statistical associating fluid theory was used to qualitatively predict activity coefficients of Li<jats:sup>+</jats:sup> and Mg<jats:sup>2+</jats:sup> in the organic phase of the so‐called “organic–inorganic complex strong electrolyte system.” The DIL‐enhanced extraction mechanisms at the molecular level (i.e., Li<jats:sup>+</jats:sup> extracted the form of 2Li<jats:sup>+</jats:sup> + 3TBP + 2[Tf<jats:sub>2</jats:sub>N]<jats:sup>−</jats:sup> complex) was revealed by slope analysis spectrum characters and quantum chemical calculations. This study provides guidance for the rational design of new IL‐based extractants for high‐efficiency Li<jats:sup>+</jats:sup> extraction from brines.","PeriodicalId":120,"journal":{"name":"AIChE Journal","volume":"9 1","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2025-05-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"AIChE Journal","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/aic.18907","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

Abstract

This work proposes a novel strategy for enhancing Li+ extraction from salt‐lake brines with the high Mg2+/Li+ ratio using dicationic ionic liquid (DIL)‐based extractants. The ternary mixture of the DIL [DOMIM][Tf2N]2, tributyl phosphate (TBP), and dichloromethane (DCM) as a diluent achieved a higher single‐stage Li+ extraction efficiency (86.40%) and separation selectivity of Li+/Mg2+ (302.37) compared with the ternary mixture based on monocationic IL [OMIM][Tf2N] instead of the DIL. The high Li+ extraction performance could be maintained over five‐cycle regeneration. Electrolyte perturbed‐chain statistical associating fluid theory was used to qualitatively predict activity coefficients of Li+ and Mg2+ in the organic phase of the so‐called “organic–inorganic complex strong electrolyte system.” The DIL‐enhanced extraction mechanisms at the molecular level (i.e., Li+ extracted the form of 2Li+ + 3TBP + 2[Tf2N] complex) was revealed by slope analysis spectrum characters and quantum chemical calculations. This study provides guidance for the rational design of new IL‐based extractants for high‐efficiency Li+ extraction from brines.
用指示离子液体从盐湖盐水中提取锂:ePC - SAFT模型和分子机制
本研究提出了一种新的策略,用于使用基于指示离子液体(DIL)的萃取剂提高从高Mg2+/Li+比的盐湖盐水中提取Li+。以DIL [DOMIM][Tf2N]2、磷酸三丁酯(TBP)和二氯甲烷(DCM)为稀释剂的三元混合物作为Li+的单级萃取效率(86.40%)和Li+/Mg2+的分离选择性(302.37)高于以IL [OMIM][Tf2N]代替DIL的三元混合物。在五次循环再生过程中,可保持较高的Li+萃取性能。电解质微扰链统计关联流体理论被用于定性预测所谓的“有机-无机复合强电解质体系”有机相中Li+和Mg2+的活度系数。斜率分析光谱特征和量子化学计算揭示了DIL在分子水平上的增强萃取机制(即Li+以2Li+ 3TBP + 2[Tf2N]−络合物的形式被Li+萃取)。本研究为合理设计新型IL基萃取剂,高效萃取盐水中的Li+提供了指导。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
AIChE Journal
AIChE Journal 工程技术-工程:化工
CiteScore
7.10
自引率
10.80%
发文量
411
审稿时长
3.6 months
期刊介绍: The AIChE Journal is the premier research monthly in chemical engineering and related fields. This peer-reviewed and broad-based journal reports on the most important and latest technological advances in core areas of chemical engineering as well as in other relevant engineering disciplines. To keep abreast with the progressive outlook of the profession, the Journal has been expanding the scope of its editorial contents to include such fast developing areas as biotechnology, electrochemical engineering, and environmental engineering. The AIChE Journal is indeed the global communications vehicle for the world-renowned researchers to exchange top-notch research findings with one another. Subscribing to the AIChE Journal is like having immediate access to nine topical journals in the field. Articles are categorized according to the following topical areas: Biomolecular Engineering, Bioengineering, Biochemicals, Biofuels, and Food Inorganic Materials: Synthesis and Processing Particle Technology and Fluidization Process Systems Engineering Reaction Engineering, Kinetics and Catalysis Separations: Materials, Devices and Processes Soft Materials: Synthesis, Processing and Products Thermodynamics and Molecular-Scale Phenomena Transport Phenomena and Fluid Mechanics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信