Yan Xia, Zhaosheng Yu, Minkang Zhang, Zhaowu Lin, Zhenyu Ouyang
{"title":"Swimming dynamics of a spheroidal microswimmer near a wall.","authors":"Yan Xia, Zhaosheng Yu, Minkang Zhang, Zhaowu Lin, Zhenyu Ouyang","doi":"10.1103/PhysRevE.111.045106","DOIUrl":null,"url":null,"abstract":"<p><p>In this work, we investigate the swimming dynamics of a spheroidal squirmer near a flat wall for various aspect ratios using the direct-forcing fictitious domain method. Our results show that the swimming mode of a strong pusher undergoes the transition from either oscillating or escaping to crawling as the aspect ratio increases. A strong puller exhibits an opposite transition: from crawling to escaping and then to oscillating as the aspect ratio increases. The mechanism for the near-wall swimming behavior of a strong puller and pusher is explored by analyzing the hydrodynamic force and torque on a swimmer with its height and orientation fixed. The results indicate that both collision and hydrodynamic toques are important to the near-wall swimming state of the squirmer. Additionally, we found that the initial orientation angle and the release distance do not influence the swimming mode when the squirmer initially swims toward the wall at an angle smaller than -π/8.</p>","PeriodicalId":20085,"journal":{"name":"Physical review. E","volume":"111 4-2","pages":"045106"},"PeriodicalIF":2.4000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical review. E","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/PhysRevE.111.045106","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0
Abstract
In this work, we investigate the swimming dynamics of a spheroidal squirmer near a flat wall for various aspect ratios using the direct-forcing fictitious domain method. Our results show that the swimming mode of a strong pusher undergoes the transition from either oscillating or escaping to crawling as the aspect ratio increases. A strong puller exhibits an opposite transition: from crawling to escaping and then to oscillating as the aspect ratio increases. The mechanism for the near-wall swimming behavior of a strong puller and pusher is explored by analyzing the hydrodynamic force and torque on a swimmer with its height and orientation fixed. The results indicate that both collision and hydrodynamic toques are important to the near-wall swimming state of the squirmer. Additionally, we found that the initial orientation angle and the release distance do not influence the swimming mode when the squirmer initially swims toward the wall at an angle smaller than -π/8.
期刊介绍:
Physical Review E (PRE), broad and interdisciplinary in scope, focuses on collective phenomena of many-body systems, with statistical physics and nonlinear dynamics as the central themes of the journal. Physical Review E publishes recent developments in biological and soft matter physics including granular materials, colloids, complex fluids, liquid crystals, and polymers. The journal covers fluid dynamics and plasma physics and includes sections on computational and interdisciplinary physics, for example, complex networks.