Revisiting classical nucleation theory: Insights into heterogeneous ice nucleation on nanoscale substrates.

IF 2.4 3区 物理与天体物理 Q1 Mathematics
Yufeng Liu, Jincheng Zeng, Yu Zhang, Jianyang Wu, Zhisen Zhang
{"title":"Revisiting classical nucleation theory: Insights into heterogeneous ice nucleation on nanoscale substrates.","authors":"Yufeng Liu, Jincheng Zeng, Yu Zhang, Jianyang Wu, Zhisen Zhang","doi":"10.1103/PhysRevE.111.044107","DOIUrl":null,"url":null,"abstract":"<p><p>Heterogeneous nucleation plays a pivotal role in the ice nucleation process. Within the classical nucleation theory (CNT) framework, the heterogeneous nucleation rate is proportional to the substrate surface area, typically assuming infinite substrate surfaces. However, when the substrate size approaches the nanoscale, the nucleation rate deviates significantly from CNT predictions. This study presents a novel theoretical model that distinguishes the nanoscale substrate into central and edge regions, attributing different contributions to ice nucleation. We hypothesize that the edge width equals the critical size of the nucleus (r_{c}) and validate this hypothesis using molecular dynamics (MD) simulations with the coarse-grained water model (mW model) on circular and rectangular substrates of varying sizes. Our results demonstrate that the edge region impedes heterogeneous ice nucleation, with the MD calculated nucleation rates aligning well with our model. Furthermore, the statistical edge width matches the critical nucleus size r_{c}. By incorporating this refined model, our findings reconcile the nucleation rates with CNT predictions, offering new insights into heterogeneous ice nucleation at the nanoscale.</p>","PeriodicalId":20085,"journal":{"name":"Physical review. E","volume":"111 4-1","pages":"044107"},"PeriodicalIF":2.4000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical review. E","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/PhysRevE.111.044107","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

Abstract

Heterogeneous nucleation plays a pivotal role in the ice nucleation process. Within the classical nucleation theory (CNT) framework, the heterogeneous nucleation rate is proportional to the substrate surface area, typically assuming infinite substrate surfaces. However, when the substrate size approaches the nanoscale, the nucleation rate deviates significantly from CNT predictions. This study presents a novel theoretical model that distinguishes the nanoscale substrate into central and edge regions, attributing different contributions to ice nucleation. We hypothesize that the edge width equals the critical size of the nucleus (r_{c}) and validate this hypothesis using molecular dynamics (MD) simulations with the coarse-grained water model (mW model) on circular and rectangular substrates of varying sizes. Our results demonstrate that the edge region impedes heterogeneous ice nucleation, with the MD calculated nucleation rates aligning well with our model. Furthermore, the statistical edge width matches the critical nucleus size r_{c}. By incorporating this refined model, our findings reconcile the nucleation rates with CNT predictions, offering new insights into heterogeneous ice nucleation at the nanoscale.

重温经典成核理论:对纳米尺度基底上非均相冰成核的见解。
非均相成核在冰成核过程中起着关键作用。在经典成核理论(CNT)框架中,非均相成核速率与衬底表面积成正比,通常假设衬底表面积无限。然而,当衬底尺寸接近纳米尺度时,成核速率明显偏离碳纳米管的预测。本研究提出了一种新的理论模型,该模型将纳米级基底区分为中心和边缘区域,归因于冰核的不同贡献。我们假设边缘宽度等于核的临界尺寸(r_{c}),并使用分子动力学(MD)模拟和粗粒度水模型(mW模型)在不同尺寸的圆形和矩形基底上验证了这一假设。我们的结果表明,边缘区域阻碍了冰的非均质成核,MD计算的成核速率与我们的模型吻合得很好。此外,统计边宽度与临界核尺寸r_{c}匹配。通过结合这个改进的模型,我们的发现使成核速率与碳纳米管预测相一致,为纳米尺度上的非均质冰成核提供了新的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Physical review. E
Physical review. E 物理-物理:流体与等离子体
CiteScore
4.60
自引率
16.70%
发文量
0
审稿时长
3.3 months
期刊介绍: Physical Review E (PRE), broad and interdisciplinary in scope, focuses on collective phenomena of many-body systems, with statistical physics and nonlinear dynamics as the central themes of the journal. Physical Review E publishes recent developments in biological and soft matter physics including granular materials, colloids, complex fluids, liquid crystals, and polymers. The journal covers fluid dynamics and plasma physics and includes sections on computational and interdisciplinary physics, for example, complex networks.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信