Quantum entanglement of linearly coupled quantum harmonic oscillators.

IF 2.4 3区 物理与天体物理 Q1 Mathematics
D N Makarov, K A Makarova
{"title":"Quantum entanglement of linearly coupled quantum harmonic oscillators.","authors":"D N Makarov, K A Makarova","doi":"10.1103/PhysRevE.111.044140","DOIUrl":null,"url":null,"abstract":"<p><p>Quantum harmonic oscillators coupled through coordinates and momenta, represented by the Hamiltonian H[over ̂]=∑_{i=1}^{2}(p[over ̂]_{i}^{2}/2m_{i}+m_{i}ω_{i}^{2}/2x_{i}^{2})+H[over ̂]_{int}, where the interaction of two oscillators H[over ̂]_{int}=ik_{1}x_{1}p[over ̂]_{2}+ik_{2}x_{2}p[over ̂]_{1}+k_{3}x_{1}x_{2}-k_{4}p[over ̂]_{1}p[over ̂]_{2}, are found in many applications of quantum optics, nonlinear physics, molecular chemistry, and biophysics. Despite this, there is currently no general solution to the Schrödinger equation for such a system. This is especially relevant for quantum entanglement of such a system in quantum optics applications. Here this problem is solved and it is shown that quantum entanglement depends on only one coefficient, R∈(0,1), which includes all the parameters of the system under consideration. It has been shown that quantum entanglement can be very large at certain values of this coefficient. The results obtained have a fairly simple analytical form, which facilitates analysis.</p>","PeriodicalId":20085,"journal":{"name":"Physical review. E","volume":"111 4-1","pages":"044140"},"PeriodicalIF":2.4000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical review. E","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/PhysRevE.111.044140","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

Abstract

Quantum harmonic oscillators coupled through coordinates and momenta, represented by the Hamiltonian H[over ̂]=∑_{i=1}^{2}(p[over ̂]_{i}^{2}/2m_{i}+m_{i}ω_{i}^{2}/2x_{i}^{2})+H[over ̂]_{int}, where the interaction of two oscillators H[over ̂]_{int}=ik_{1}x_{1}p[over ̂]_{2}+ik_{2}x_{2}p[over ̂]_{1}+k_{3}x_{1}x_{2}-k_{4}p[over ̂]_{1}p[over ̂]_{2}, are found in many applications of quantum optics, nonlinear physics, molecular chemistry, and biophysics. Despite this, there is currently no general solution to the Schrödinger equation for such a system. This is especially relevant for quantum entanglement of such a system in quantum optics applications. Here this problem is solved and it is shown that quantum entanglement depends on only one coefficient, R∈(0,1), which includes all the parameters of the system under consideration. It has been shown that quantum entanglement can be very large at certain values of this coefficient. The results obtained have a fairly simple analytical form, which facilitates analysis.

线性耦合量子谐振子的量子纠缠。
量子谐振子通过坐标和动量耦合在量子光学、非线性物理、分子化学和生物物理等领域中得到了广泛的应用,用哈密顿量H[over - n]=∑_{i=1}^{2}(p[over - n]_{i}^{2}/2m_{i}+m_{i}ω_{i}^{2}/2x_{i}^{2})+H[over - n]_{2} p[over - n]_{2}+ k_{3}x_{1}x_{2}-k_{4}p[over - n]_{1}p[over - n]_{2}表示,其中两个谐振子H[over - n]= ik_{1}x_{2}p[over - n]_{2}。尽管如此,对于这样一个系统,目前还没有Schrödinger方程的通解。这对于量子光学系统的量子纠缠尤为重要。这里解决了这个问题,证明了量子纠缠只依赖于一个系数R∈(0,1),它包含了所考虑的系统的所有参数。已经证明,在该系数的某些值下,量子纠缠可以非常大。所得结果具有相当简单的解析形式,便于分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Physical review. E
Physical review. E 物理-物理:流体与等离子体
CiteScore
4.60
自引率
16.70%
发文量
0
审稿时长
3.3 months
期刊介绍: Physical Review E (PRE), broad and interdisciplinary in scope, focuses on collective phenomena of many-body systems, with statistical physics and nonlinear dynamics as the central themes of the journal. Physical Review E publishes recent developments in biological and soft matter physics including granular materials, colloids, complex fluids, liquid crystals, and polymers. The journal covers fluid dynamics and plasma physics and includes sections on computational and interdisciplinary physics, for example, complex networks.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信