Pontus Svensson, Patrick Hollebon, Daniel Plummer, Sam M Vinko, Gianluca Gregori
{"title":"Modeling of warm dense hydrogen via explicit real-time electron dynamics: Electron transport properties.","authors":"Pontus Svensson, Patrick Hollebon, Daniel Plummer, Sam M Vinko, Gianluca Gregori","doi":"10.1103/PhysRevE.111.045208","DOIUrl":null,"url":null,"abstract":"<p><p>We extract electron transport properties from atomistic simulations of a two-component plasma by mapping the long-wavelength behavior to a two-fluid model. The mapping procedure is performed via Markov Chain Monte Carlo sampling over multiple spectra simultaneously. The free-electron dynamic structure factor and its properties have been investigated in the hydrodynamic formulation to justify its application to the long-wavelength behavior of warm dense matter. We have applied this method to warm dense hydrogen modeled with wave packet molecular dynamics and showed that the inferred electron transport properties are in agreement with a variety of reference calculations, except for the electron viscosity, where a substantive decrease is observed when compared to classical models.</p>","PeriodicalId":20085,"journal":{"name":"Physical review. E","volume":"111 4-2","pages":"045208"},"PeriodicalIF":2.4000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical review. E","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/PhysRevE.111.045208","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0
Abstract
We extract electron transport properties from atomistic simulations of a two-component plasma by mapping the long-wavelength behavior to a two-fluid model. The mapping procedure is performed via Markov Chain Monte Carlo sampling over multiple spectra simultaneously. The free-electron dynamic structure factor and its properties have been investigated in the hydrodynamic formulation to justify its application to the long-wavelength behavior of warm dense matter. We have applied this method to warm dense hydrogen modeled with wave packet molecular dynamics and showed that the inferred electron transport properties are in agreement with a variety of reference calculations, except for the electron viscosity, where a substantive decrease is observed when compared to classical models.
期刊介绍:
Physical Review E (PRE), broad and interdisciplinary in scope, focuses on collective phenomena of many-body systems, with statistical physics and nonlinear dynamics as the central themes of the journal. Physical Review E publishes recent developments in biological and soft matter physics including granular materials, colloids, complex fluids, liquid crystals, and polymers. The journal covers fluid dynamics and plasma physics and includes sections on computational and interdisciplinary physics, for example, complex networks.