{"title":"Microscale structural fluctuations at the melting phase transition of strongly confined achiral and chiral nematics.","authors":"J Pišljar, A Nych, U Ognysta, S Kralj, I Muševič","doi":"10.1103/PhysRevE.111.045415","DOIUrl":null,"url":null,"abstract":"<p><p>We report on direct microscopic observations of thermally driven fluctuating dynamics in a narrow temperature region between the isotropic and low-temperature phases in achiral, chiral, and strongly chiral (blue phase) liquid crystal materials. We observe the dynamics in samples strongly confined between two glass surfaces which act as disordering surfaces at thicknesses above the critical confinement thickness below which the phase transition is gradual. In achiral and long-pitch chiral materials the fluctuating appears as formation and disappearance of small structureless nematic domains, whereas in strongly chiral materials, which exhibit blue phase I at larger thicknesses, these fluctuations are real-time formation and annihilation of topologically nontrivial nematic half-skyrmions. We study the dynamics of these fluctuations and present a simple model that explains how such dynamics is possible in ultraconfined systems.</p>","PeriodicalId":20085,"journal":{"name":"Physical review. E","volume":"111 4-2","pages":"045415"},"PeriodicalIF":2.4000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical review. E","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/PhysRevE.111.045415","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0
Abstract
We report on direct microscopic observations of thermally driven fluctuating dynamics in a narrow temperature region between the isotropic and low-temperature phases in achiral, chiral, and strongly chiral (blue phase) liquid crystal materials. We observe the dynamics in samples strongly confined between two glass surfaces which act as disordering surfaces at thicknesses above the critical confinement thickness below which the phase transition is gradual. In achiral and long-pitch chiral materials the fluctuating appears as formation and disappearance of small structureless nematic domains, whereas in strongly chiral materials, which exhibit blue phase I at larger thicknesses, these fluctuations are real-time formation and annihilation of topologically nontrivial nematic half-skyrmions. We study the dynamics of these fluctuations and present a simple model that explains how such dynamics is possible in ultraconfined systems.
期刊介绍:
Physical Review E (PRE), broad and interdisciplinary in scope, focuses on collective phenomena of many-body systems, with statistical physics and nonlinear dynamics as the central themes of the journal. Physical Review E publishes recent developments in biological and soft matter physics including granular materials, colloids, complex fluids, liquid crystals, and polymers. The journal covers fluid dynamics and plasma physics and includes sections on computational and interdisciplinary physics, for example, complex networks.