{"title":"Intrinsic Langevin dynamics of rigid inclusions on curved surfaces.","authors":"Balázs Németh, Ronojoy Adhikari","doi":"10.1103/PhysRevE.111.045418","DOIUrl":null,"url":null,"abstract":"<p><p>The stochastic dynamics of a rigid inclusion constrained to move on a curved surface has many applications in biological and soft matter physics, ranging from the diffusion of passive or active membrane proteins to the motion of phoretic particles on liquid-liquid interfaces. Here we construct intrinsic Langevin equations for an oriented rigid inclusion on a fixed curved surface using Cartan's method of moving frames. We first derive the Hamiltonian equations of motion for the translational and rotational momenta in the body frame. Surprisingly, surface curvature couples the linear and angular momenta of the inclusion. We then add to the Hamiltonian equations linear friction, white noise, and arbitrary configuration-dependent forces and torques to obtain intrinsic Langevin equations of motion in phase space. We provide the integrability conditions, made nontrivial by surface curvature, for the forces and torques to admit a potential, thus distinguishing between passive and active stochastic motion. We derive the corresponding Fokker-Planck equation in geometric form and obtain fluctuation-dissipation relations that ensure Gibbsian equilibrium. We extract the overdamped equations of motion by adiabatically eliminating the momenta from the Fokker-Planck equation, showing how a peculiar cancellation leads to the naively expected Smoluchowski limit. The overdamped equations can be used for accurate and efficient intrinsic Brownian dynamics simulations of passive, driven, and active diffusion processes on curved surfaces. Our work generalizes to the collective dynamics of many inclusions on curved surfaces.</p>","PeriodicalId":20085,"journal":{"name":"Physical review. E","volume":"111 4-2","pages":"045418"},"PeriodicalIF":2.4000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical review. E","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/PhysRevE.111.045418","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0
Abstract
The stochastic dynamics of a rigid inclusion constrained to move on a curved surface has many applications in biological and soft matter physics, ranging from the diffusion of passive or active membrane proteins to the motion of phoretic particles on liquid-liquid interfaces. Here we construct intrinsic Langevin equations for an oriented rigid inclusion on a fixed curved surface using Cartan's method of moving frames. We first derive the Hamiltonian equations of motion for the translational and rotational momenta in the body frame. Surprisingly, surface curvature couples the linear and angular momenta of the inclusion. We then add to the Hamiltonian equations linear friction, white noise, and arbitrary configuration-dependent forces and torques to obtain intrinsic Langevin equations of motion in phase space. We provide the integrability conditions, made nontrivial by surface curvature, for the forces and torques to admit a potential, thus distinguishing between passive and active stochastic motion. We derive the corresponding Fokker-Planck equation in geometric form and obtain fluctuation-dissipation relations that ensure Gibbsian equilibrium. We extract the overdamped equations of motion by adiabatically eliminating the momenta from the Fokker-Planck equation, showing how a peculiar cancellation leads to the naively expected Smoluchowski limit. The overdamped equations can be used for accurate and efficient intrinsic Brownian dynamics simulations of passive, driven, and active diffusion processes on curved surfaces. Our work generalizes to the collective dynamics of many inclusions on curved surfaces.
期刊介绍:
Physical Review E (PRE), broad and interdisciplinary in scope, focuses on collective phenomena of many-body systems, with statistical physics and nonlinear dynamics as the central themes of the journal. Physical Review E publishes recent developments in biological and soft matter physics including granular materials, colloids, complex fluids, liquid crystals, and polymers. The journal covers fluid dynamics and plasma physics and includes sections on computational and interdisciplinary physics, for example, complex networks.