{"title":"Theory for the anomalous phase behavior of inertial active Brownian particles.","authors":"Jiechao Feng, Ahmad K Omar","doi":"10.1103/PhysRevE.111.L043402","DOIUrl":null,"url":null,"abstract":"<p><p>In contrast to equilibrium systems, inertia can profoundly impact the phase behavior of active systems. This has been made particularly evident in recent years, with motility-induced phase separation (MIPS) exhibiting several intriguing dependencies on translational inertia. Here, we report extensive simulations characterizing the phase behavior of inertial active Brownian particles and develop a mechanical theory for the complete phase diagram without appealing to equilibrium notions. Our theory qualitatively captures all aspects of liquid-gas coexistence, including the critical value of inertia above which MIPS ceases. Notably, our findings highlight that particle softness, and not inertia, is responsible for the MIPS reentrance effect at the center of a proposed active refrigeration cycle.</p>","PeriodicalId":20085,"journal":{"name":"Physical review. E","volume":"111 4","pages":"L043402"},"PeriodicalIF":2.4000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical review. E","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/PhysRevE.111.L043402","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0
Abstract
In contrast to equilibrium systems, inertia can profoundly impact the phase behavior of active systems. This has been made particularly evident in recent years, with motility-induced phase separation (MIPS) exhibiting several intriguing dependencies on translational inertia. Here, we report extensive simulations characterizing the phase behavior of inertial active Brownian particles and develop a mechanical theory for the complete phase diagram without appealing to equilibrium notions. Our theory qualitatively captures all aspects of liquid-gas coexistence, including the critical value of inertia above which MIPS ceases. Notably, our findings highlight that particle softness, and not inertia, is responsible for the MIPS reentrance effect at the center of a proposed active refrigeration cycle.
期刊介绍:
Physical Review E (PRE), broad and interdisciplinary in scope, focuses on collective phenomena of many-body systems, with statistical physics and nonlinear dynamics as the central themes of the journal. Physical Review E publishes recent developments in biological and soft matter physics including granular materials, colloids, complex fluids, liquid crystals, and polymers. The journal covers fluid dynamics and plasma physics and includes sections on computational and interdisciplinary physics, for example, complex networks.