{"title":"Porous biocompatible composite scaffold (CS/MFC/HAp) with N-Boc L-cysteine methyl ester for bone tissue engineering applications.","authors":"Sivasankar Mv, Sreenivasa Rao Parcha","doi":"10.1080/09205063.2025.2509425","DOIUrl":null,"url":null,"abstract":"<p><p>In this study, we fabricated composite scaffolds containing micro-fibrillated cellulose (MFC), chitosan (CS), and hydroxyapatite (HAp) were fabricated using the freeze-drying technique. N-Boc-L-cysteine methyl ester (NBLCME) was synthesized and incorporated into the composite scaffold (CS/MFC/HAp) at different concentrations (20-100µg/ml). The composite scaffolds were characterized by SEM and FTIR results. Interconnected porous structure showed that the scaffolds had 80-90% porosity with a pore diameter range of 100-450µm and fiber lengths of 6.1 -11.87 µm. FTIR analysis confirmed the interaction between CS/MFC/HAp and NBLCME. The treated scaffolds exhibited sustained drug delivery following Fickian diffusion behavior (<i>n</i> ≤ 0.45). The biological study of treated scaffolds on human osteosarcoma cells (MG63 cell line) was evaluated by examining cell viability, ALP, ARS activities, and cell adhesion. The cytotoxicity of the treated scaffolds showed no cytotoxic effects on the MG63 cell line. ALP and ARS activities showed significantly enhanced phosphate and calcium deposition on the scaffold. Taken together, the result suggested that the fabricated composite scaffold (CS/MFC/HAp) incorporated with NBLCME showed excellent properties and its potential for bone-related applications.</p>","PeriodicalId":15195,"journal":{"name":"Journal of Biomaterials Science, Polymer Edition","volume":" ","pages":"1-17"},"PeriodicalIF":3.6000,"publicationDate":"2025-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biomaterials Science, Polymer Edition","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/09205063.2025.2509425","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
In this study, we fabricated composite scaffolds containing micro-fibrillated cellulose (MFC), chitosan (CS), and hydroxyapatite (HAp) were fabricated using the freeze-drying technique. N-Boc-L-cysteine methyl ester (NBLCME) was synthesized and incorporated into the composite scaffold (CS/MFC/HAp) at different concentrations (20-100µg/ml). The composite scaffolds were characterized by SEM and FTIR results. Interconnected porous structure showed that the scaffolds had 80-90% porosity with a pore diameter range of 100-450µm and fiber lengths of 6.1 -11.87 µm. FTIR analysis confirmed the interaction between CS/MFC/HAp and NBLCME. The treated scaffolds exhibited sustained drug delivery following Fickian diffusion behavior (n ≤ 0.45). The biological study of treated scaffolds on human osteosarcoma cells (MG63 cell line) was evaluated by examining cell viability, ALP, ARS activities, and cell adhesion. The cytotoxicity of the treated scaffolds showed no cytotoxic effects on the MG63 cell line. ALP and ARS activities showed significantly enhanced phosphate and calcium deposition on the scaffold. Taken together, the result suggested that the fabricated composite scaffold (CS/MFC/HAp) incorporated with NBLCME showed excellent properties and its potential for bone-related applications.
期刊介绍:
The Journal of Biomaterials Science, Polymer Edition publishes fundamental research on the properties of polymeric biomaterials and the mechanisms of interaction between such biomaterials and living organisms, with special emphasis on the molecular and cellular levels.
The scope of the journal includes polymers for drug delivery, tissue engineering, large molecules in living organisms like DNA, proteins and more. As such, the Journal of Biomaterials Science, Polymer Edition combines biomaterials applications in biomedical, pharmaceutical and biological fields.