Ni Zeng, Jie-Ting Li, Zhi-Juan Zhang, Zhi-Peng Yan, Tao Liao, Guo-Xin Ni
{"title":"Nuclear magnetic resonance-based metabolomic study of rat brain after different intensity treadmill running.","authors":"Ni Zeng, Jie-Ting Li, Zhi-Juan Zhang, Zhi-Peng Yan, Tao Liao, Guo-Xin Ni","doi":"10.1007/s13105-025-01094-7","DOIUrl":null,"url":null,"abstract":"<p><p>Previous studies have revealed that different intensities of exercise training have an impact on cognition. However, the cognitive effects of different intensities of exercise and its underlying mechanisms are not fully understood. The aim of this paper was to investigate the effects of different intensities of treadmill exercise on cognition in rats from the perspective of metabolomic analysis. In this study, ninety-six male rats were randomly divided into four groups: control group (CON group, n = 24), low-intensity running group (LIR group, n = 24), medium-intensity running group (MIR group, n = 24), and high-intensity running group (HIR group, n = 24). After 4 weeks of treadmill running, rats in the LIR group located the platform significantly faster than those in the CON(p = 0.027) and HIR(p = 0.011) groups. After 8 weeks of treadmill running, rats in the LIR and MIR groups also found the platform more quickly than those in CON group (p = 0.003 and p = 0.015, respectively). Additionally, rats in the MIR group showed significantly increased superoxide dismutase (SOD)/catalase (CAT) in the hippocampus compared with those exposed to HIR(p = 0.03), LIR(p = 0.0008), and CON(p = 0.0004). Metabolomic analysis revealed that, after 8 weeks of running, 14 metabolites with similar characteristics differed between the MIR and HIR groups compared to the CON group. The LIR group showed significant alterations in 12 key metabolites compared to the CON group. The LIR, MIR, and HIR groups also demonstrated significant changes in 3, 4, and 3 metabolic pathways respectively, when compared to the CON group. In conclusion, the above results indicate that LIR can effectively decrease fumarate accumulation, thereby enhancing the TCA cycle and brain energy metabolism which in turn improved cognitive function, while MIR can modify glutathione metabolism to alleviate oxidative stress (OS), supporting cognitive function.</p>","PeriodicalId":16779,"journal":{"name":"Journal of physiology and biochemistry","volume":" ","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2025-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of physiology and biochemistry","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s13105-025-01094-7","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Previous studies have revealed that different intensities of exercise training have an impact on cognition. However, the cognitive effects of different intensities of exercise and its underlying mechanisms are not fully understood. The aim of this paper was to investigate the effects of different intensities of treadmill exercise on cognition in rats from the perspective of metabolomic analysis. In this study, ninety-six male rats were randomly divided into four groups: control group (CON group, n = 24), low-intensity running group (LIR group, n = 24), medium-intensity running group (MIR group, n = 24), and high-intensity running group (HIR group, n = 24). After 4 weeks of treadmill running, rats in the LIR group located the platform significantly faster than those in the CON(p = 0.027) and HIR(p = 0.011) groups. After 8 weeks of treadmill running, rats in the LIR and MIR groups also found the platform more quickly than those in CON group (p = 0.003 and p = 0.015, respectively). Additionally, rats in the MIR group showed significantly increased superoxide dismutase (SOD)/catalase (CAT) in the hippocampus compared with those exposed to HIR(p = 0.03), LIR(p = 0.0008), and CON(p = 0.0004). Metabolomic analysis revealed that, after 8 weeks of running, 14 metabolites with similar characteristics differed between the MIR and HIR groups compared to the CON group. The LIR group showed significant alterations in 12 key metabolites compared to the CON group. The LIR, MIR, and HIR groups also demonstrated significant changes in 3, 4, and 3 metabolic pathways respectively, when compared to the CON group. In conclusion, the above results indicate that LIR can effectively decrease fumarate accumulation, thereby enhancing the TCA cycle and brain energy metabolism which in turn improved cognitive function, while MIR can modify glutathione metabolism to alleviate oxidative stress (OS), supporting cognitive function.
期刊介绍:
The Journal of Physiology and Biochemistry publishes original research articles and reviews describing relevant new observations on molecular, biochemical and cellular mechanisms involved in human physiology. All areas of the physiology are covered. Special emphasis is placed on the integration of those levels in the whole-organism. The Journal of Physiology and Biochemistry also welcomes articles on molecular nutrition and metabolism studies, and works related to the genomic or proteomic bases of the physiological functions. Descriptive manuscripts about physiological/biochemical processes or clinical manuscripts will not be considered. The journal will not accept manuscripts testing effects of animal or plant extracts.