Lei Peng, Lin Xu, Zheyuan Zhang, Zexuan Wang, Xiao Zhong, Letong Wang, Ziyi Peng, Ruiping Xu, Yongcong Shao
{"title":"Classifying athletes and non-athletes by differences in spontaneous brain activity: a machine learning and fMRI study.","authors":"Lei Peng, Lin Xu, Zheyuan Zhang, Zexuan Wang, Xiao Zhong, Letong Wang, Ziyi Peng, Ruiping Xu, Yongcong Shao","doi":"10.1007/s00429-025-02941-5","DOIUrl":null,"url":null,"abstract":"<p><p>Different types of sports training can induce distinct changes in brain activity and function; however, it remains unclear if there are commonalities across various sports disciplines. Moreover, the relationship between these brain activity alterations and the duration of sports training requires further investigation. This study employed resting-state functional magnetic resonance imaging (rs-fMRI) techniques to analyze spontaneous brain activity using the amplitude of low-frequency fluctuations (ALFF) and fractional amplitude of low-frequency fluctuations (fALFF) in 86 highly trained athletes compared to 74 age- and gender-matched non-athletes. Our findings revealed significantly higher ALFF values in the Insula_R (Right Insula), OFCpost_R (Right Posterior orbital gyrus), and OFClat_R (Right Lateral orbital gyrus) in athletes compared to controls, whereas fALFF in the Postcentral_R (Right Postcentral) was notably higher in controls. Additionally, we identified a significant negative correlation between fALFF values in the Postcentral_R of athletes and their years of professional training. Utilizing machine learning algorithms, we achieved accurate classification of brain activity patterns distinguishing athletes from non-athletes with over 96.97% accuracy. These results suggest that the functional reorganization observed in athletes' brains may signify an adaptation to prolonged training, potentially reflecting enhanced processing efficiency. This study emphasizes the importance of examining the impact of long-term sports training on brain function, which could influence cognitive and sensory systems crucial for optimal athletic performance. Furthermore, machine learning methods could be used in the future to select athletes based on differences in brain activity.</p>","PeriodicalId":9145,"journal":{"name":"Brain Structure & Function","volume":"230 5","pages":"74"},"PeriodicalIF":2.7000,"publicationDate":"2025-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Brain Structure & Function","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s00429-025-02941-5","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ANATOMY & MORPHOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Different types of sports training can induce distinct changes in brain activity and function; however, it remains unclear if there are commonalities across various sports disciplines. Moreover, the relationship between these brain activity alterations and the duration of sports training requires further investigation. This study employed resting-state functional magnetic resonance imaging (rs-fMRI) techniques to analyze spontaneous brain activity using the amplitude of low-frequency fluctuations (ALFF) and fractional amplitude of low-frequency fluctuations (fALFF) in 86 highly trained athletes compared to 74 age- and gender-matched non-athletes. Our findings revealed significantly higher ALFF values in the Insula_R (Right Insula), OFCpost_R (Right Posterior orbital gyrus), and OFClat_R (Right Lateral orbital gyrus) in athletes compared to controls, whereas fALFF in the Postcentral_R (Right Postcentral) was notably higher in controls. Additionally, we identified a significant negative correlation between fALFF values in the Postcentral_R of athletes and their years of professional training. Utilizing machine learning algorithms, we achieved accurate classification of brain activity patterns distinguishing athletes from non-athletes with over 96.97% accuracy. These results suggest that the functional reorganization observed in athletes' brains may signify an adaptation to prolonged training, potentially reflecting enhanced processing efficiency. This study emphasizes the importance of examining the impact of long-term sports training on brain function, which could influence cognitive and sensory systems crucial for optimal athletic performance. Furthermore, machine learning methods could be used in the future to select athletes based on differences in brain activity.
期刊介绍:
Brain Structure & Function publishes research that provides insight into brain structure−function relationships. Studies published here integrate data spanning from molecular, cellular, developmental, and systems architecture to the neuroanatomy of behavior and cognitive functions. Manuscripts with focus on the spinal cord or the peripheral nervous system are not accepted for publication. Manuscripts with focus on diseases, animal models of diseases, or disease-related mechanisms are only considered for publication, if the findings provide novel insight into the organization and mechanisms of normal brain structure and function.