Exploring the interaction dynamics of eukaryotic translation initiation factor 2.

IF 3.8 3区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY
Assen Marintchev
{"title":"Exploring the interaction dynamics of eukaryotic translation initiation factor 2.","authors":"Assen Marintchev","doi":"10.1042/BST20253022","DOIUrl":null,"url":null,"abstract":"<p><p>Eukaryotic translation initiation typically involves recruitment of the 43S ribosomal pre-initiation complex (PIC) to the 5'-end of the mRNA to form the 48S PIC, followed by scanning in search of a start codon in a favorable nucleotide complex. The start codon is recognized through base-pairing with the anticodon of the initiator Met-tRNAi. The stringency of start codon selection controls the probability of initiation from a start codon in a suboptimal nucleotide context. Met-tRNAi itself is recruited to the 43S PIC by the eukaryotic translation initiation factor 2 (eIF2), in the form of the eIF2-GTP•Met-tRNAi ternary complex (TC). GTP hydrolysis by eIF2, promoted by its GTPase-activating protein eIF5, leads to the release of eIF2-GDP from the PIC. Recycling of eIF2-GDP to TC is promoted by the guanine nucleotide exchange factor eIF2B. Its inhibition by a number of stress factors triggers the integrated stress response (ISR). This review describes the recent advances in elucidating the interactions of eIF2 and its partners, with an emphasis on the timing and dynamics of their binding to, and release from the PIC. Special attention is given to the regulation of the stringency of start codon selection and the ISR. The discussion is mostly limited to translation initiation in mammals and budding yeast.</p>","PeriodicalId":8841,"journal":{"name":"Biochemical Society transactions","volume":" ","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2025-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochemical Society transactions","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1042/BST20253022","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Eukaryotic translation initiation typically involves recruitment of the 43S ribosomal pre-initiation complex (PIC) to the 5'-end of the mRNA to form the 48S PIC, followed by scanning in search of a start codon in a favorable nucleotide complex. The start codon is recognized through base-pairing with the anticodon of the initiator Met-tRNAi. The stringency of start codon selection controls the probability of initiation from a start codon in a suboptimal nucleotide context. Met-tRNAi itself is recruited to the 43S PIC by the eukaryotic translation initiation factor 2 (eIF2), in the form of the eIF2-GTP•Met-tRNAi ternary complex (TC). GTP hydrolysis by eIF2, promoted by its GTPase-activating protein eIF5, leads to the release of eIF2-GDP from the PIC. Recycling of eIF2-GDP to TC is promoted by the guanine nucleotide exchange factor eIF2B. Its inhibition by a number of stress factors triggers the integrated stress response (ISR). This review describes the recent advances in elucidating the interactions of eIF2 and its partners, with an emphasis on the timing and dynamics of their binding to, and release from the PIC. Special attention is given to the regulation of the stringency of start codon selection and the ISR. The discussion is mostly limited to translation initiation in mammals and budding yeast.

真核生物翻译起始因子2相互作用动力学研究。
真核生物的翻译起始通常包括将43S核糖体起始前复合物(PIC)募集到mRNA的5'端,形成48S PIC,然后扫描在有利的核苷酸复合物中寻找起始密码子。起始密码子通过与启动子Met-tRNAi的反密码子碱基配对来识别。起始密码子选择的严格性控制着在次优核苷酸环境下起始密码子的启动概率。Met-tRNAi本身通过真核翻译起始因子2 (eIF2)以eIF2- gtp•Met-tRNAi三元配合物(TC)的形式招募到43S PIC。在gtpase激活蛋白eIF5的促进下,eIF2水解GTP,导致eIF2- gdp从PIC中释放。鸟嘌呤核苷酸交换因子eIF2B促进了eIF2-GDP到TC的再循环。它受到多种应激因子的抑制,从而引发综合应激反应(integrated stress response, ISR)。本文综述了最近在阐明eIF2及其伙伴相互作用方面的进展,重点介绍了它们与PIC结合和释放的时间和动力学。特别注意了开始密码子选择的严格性和ISR的调节。讨论主要局限于哺乳动物和出芽酵母的翻译起始。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Biochemical Society transactions
Biochemical Society transactions 生物-生化与分子生物学
CiteScore
7.80
自引率
0.00%
发文量
351
审稿时长
3-6 weeks
期刊介绍: Biochemical Society Transactions is the reviews journal of the Biochemical Society. Publishing concise reviews written by experts in the field, providing a timely snapshot of the latest developments across all areas of the molecular and cellular biosciences. Elevating our authors’ ideas and expertise, each review includes a perspectives section where authors offer comment on the latest advances, a glimpse of future challenges and highlighting the importance of associated research areas in far broader contexts.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信