Palwasha Baryalai, David Irenaeus, Eric Toh, Madeleine Ramstedt, Bernt Eric Uhlin, Aftab Nadeem, Sun Nyunt Wai
{"title":"Hemagglutinin Protease HapA Associated With Vibrio cholerae Outer Membrane Vesicles (OMVs) Disrupts Tight and Adherens Junctions","authors":"Palwasha Baryalai, David Irenaeus, Eric Toh, Madeleine Ramstedt, Bernt Eric Uhlin, Aftab Nadeem, Sun Nyunt Wai","doi":"10.1002/jev2.70092","DOIUrl":null,"url":null,"abstract":"<p>This study explores the virulence mechanisms of <i>Vibrio cholerae</i>, with a particular emphasis on HapA, a zinc metalloprotease delivered via outer membrane vesicles (OMVs). The findings reveal that OMV-associated HapA disrupts the integrity of tight and adherens junctions in intestinal epithelial cell models more effectively than its purified counterpart, suggesting that association with OMVs substantially potentiates the pathogenic effects of HapA. The study further details the uptake of <i>V. cholerae</i> OMVs by epithelial cells, as well as their targeted degradation of key junctional proteins, including claudin, ZO-1, and β-catenin. These results highlight the critical role of OMV-associated HapA in compromising epithelial barrier function. Additionally, the use of spheroids and intestinal organoids in our experiments provides deeper insight into bacterial pathogenesis, offering valuable information for the development of targeted therapeutic strategies.</p>","PeriodicalId":15811,"journal":{"name":"Journal of Extracellular Vesicles","volume":"14 5","pages":""},"PeriodicalIF":14.5000,"publicationDate":"2025-05-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jev2.70092","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Extracellular Vesicles","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jev2.70092","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
This study explores the virulence mechanisms of Vibrio cholerae, with a particular emphasis on HapA, a zinc metalloprotease delivered via outer membrane vesicles (OMVs). The findings reveal that OMV-associated HapA disrupts the integrity of tight and adherens junctions in intestinal epithelial cell models more effectively than its purified counterpart, suggesting that association with OMVs substantially potentiates the pathogenic effects of HapA. The study further details the uptake of V. cholerae OMVs by epithelial cells, as well as their targeted degradation of key junctional proteins, including claudin, ZO-1, and β-catenin. These results highlight the critical role of OMV-associated HapA in compromising epithelial barrier function. Additionally, the use of spheroids and intestinal organoids in our experiments provides deeper insight into bacterial pathogenesis, offering valuable information for the development of targeted therapeutic strategies.
期刊介绍:
The Journal of Extracellular Vesicles is an open access research publication that focuses on extracellular vesicles, including microvesicles, exosomes, ectosomes, and apoptotic bodies. It serves as the official journal of the International Society for Extracellular Vesicles and aims to facilitate the exchange of data, ideas, and information pertaining to the chemistry, biology, and applications of extracellular vesicles. The journal covers various aspects such as the cellular and molecular mechanisms of extracellular vesicles biogenesis, technological advancements in their isolation, quantification, and characterization, the role and function of extracellular vesicles in biology, stem cell-derived extracellular vesicles and their biology, as well as the application of extracellular vesicles for pharmacological, immunological, or genetic therapies.
The Journal of Extracellular Vesicles is widely recognized and indexed by numerous services, including Biological Abstracts, BIOSIS Previews, Chemical Abstracts Service (CAS), Current Contents/Life Sciences, Directory of Open Access Journals (DOAJ), Journal Citation Reports/Science Edition, Google Scholar, ProQuest Natural Science Collection, ProQuest SciTech Collection, SciTech Premium Collection, PubMed Central/PubMed, Science Citation Index Expanded, ScienceOpen, and Scopus.