Extracellular Vesicle (EV) Targeted Cells Release Secondary Effector EVs: Indication of How To Account for Histocompatibility and Disease Specificity of EV Treatments
{"title":"Extracellular Vesicle (EV) Targeted Cells Release Secondary Effector EVs: Indication of How To Account for Histocompatibility and Disease Specificity of EV Treatments","authors":"Philip W. Askenase","doi":"10.1002/jev2.70076","DOIUrl":null,"url":null,"abstract":"<p>The central hypothesis presented here is that released extracellular vesicles (EVs) can act primarily on targeted cells to induce the production of secondary EVs to mediate the final biological events. Compared here are different instances. In one, EVs, primarily produced by CD8<sup>+</sup> suppressor T cells, are activated in immune tolerance. These EVs transfer to companion recipient macrophages (Macs) the ability to generate production of secondary inhibitory EVs that affect the final-acting effector T cells. In a second instance of treating spinal cord injury (SCI), primary-acting mesenchymal stromal cell (MSC)-derived EVs target local tissue M2-type Macs to release secondary EVs that subsequently affect the local neuro microvasculature to mediate healing. Thus, these are very different systems acting similarly in this way. Per treatments with Mesenchymal Stromal Cells (MSCs), our proposal explains how their released EVs can act across tissue histocompatibility barriers and exhibit a seeming “disease specificity,” resulting in the healing of many diverse injuries and a wide variety of pathologic conditions. It is postulated that the recipients of the primary EVs, the secondarily acting cells, are often but not exclusively Macs. These are among the local responding secondary-acting cells that produce transplantation-matched EVs. Further, the secondary-acting MSC-derived primary EVs that are clinically active in many diverse instances led to the additional hypothesis that secondary EVs produced by targeted local cells may be appropriate to each specific instance to explain such disease specificity. We propose that there may be many other examples to be uncovered in which primary EVs similarly induce secondary EV healing effects.</p>","PeriodicalId":15811,"journal":{"name":"Journal of Extracellular Vesicles","volume":"14 5","pages":""},"PeriodicalIF":14.5000,"publicationDate":"2025-05-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jev2.70076","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Extracellular Vesicles","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jev2.70076","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The central hypothesis presented here is that released extracellular vesicles (EVs) can act primarily on targeted cells to induce the production of secondary EVs to mediate the final biological events. Compared here are different instances. In one, EVs, primarily produced by CD8+ suppressor T cells, are activated in immune tolerance. These EVs transfer to companion recipient macrophages (Macs) the ability to generate production of secondary inhibitory EVs that affect the final-acting effector T cells. In a second instance of treating spinal cord injury (SCI), primary-acting mesenchymal stromal cell (MSC)-derived EVs target local tissue M2-type Macs to release secondary EVs that subsequently affect the local neuro microvasculature to mediate healing. Thus, these are very different systems acting similarly in this way. Per treatments with Mesenchymal Stromal Cells (MSCs), our proposal explains how their released EVs can act across tissue histocompatibility barriers and exhibit a seeming “disease specificity,” resulting in the healing of many diverse injuries and a wide variety of pathologic conditions. It is postulated that the recipients of the primary EVs, the secondarily acting cells, are often but not exclusively Macs. These are among the local responding secondary-acting cells that produce transplantation-matched EVs. Further, the secondary-acting MSC-derived primary EVs that are clinically active in many diverse instances led to the additional hypothesis that secondary EVs produced by targeted local cells may be appropriate to each specific instance to explain such disease specificity. We propose that there may be many other examples to be uncovered in which primary EVs similarly induce secondary EV healing effects.
期刊介绍:
The Journal of Extracellular Vesicles is an open access research publication that focuses on extracellular vesicles, including microvesicles, exosomes, ectosomes, and apoptotic bodies. It serves as the official journal of the International Society for Extracellular Vesicles and aims to facilitate the exchange of data, ideas, and information pertaining to the chemistry, biology, and applications of extracellular vesicles. The journal covers various aspects such as the cellular and molecular mechanisms of extracellular vesicles biogenesis, technological advancements in their isolation, quantification, and characterization, the role and function of extracellular vesicles in biology, stem cell-derived extracellular vesicles and their biology, as well as the application of extracellular vesicles for pharmacological, immunological, or genetic therapies.
The Journal of Extracellular Vesicles is widely recognized and indexed by numerous services, including Biological Abstracts, BIOSIS Previews, Chemical Abstracts Service (CAS), Current Contents/Life Sciences, Directory of Open Access Journals (DOAJ), Journal Citation Reports/Science Edition, Google Scholar, ProQuest Natural Science Collection, ProQuest SciTech Collection, SciTech Premium Collection, PubMed Central/PubMed, Science Citation Index Expanded, ScienceOpen, and Scopus.