Entire curves generating all shapes of Nevanlinna currents

IF 1 2区 数学 Q1 MATHEMATICS
Hao Wu, Song-Yan Xie
{"title":"Entire curves generating all shapes of Nevanlinna currents","authors":"Hao Wu,&nbsp;Song-Yan Xie","doi":"10.1112/jlms.70177","DOIUrl":null,"url":null,"abstract":"<p>First, we show that every complex torus <span></span><math>\n <semantics>\n <mi>T</mi>\n <annotation>$\\mathbb {T}$</annotation>\n </semantics></math> contains some entire curve <span></span><math>\n <semantics>\n <mrow>\n <mi>g</mi>\n <mo>:</mo>\n <mi>C</mi>\n <mo>→</mo>\n <mi>T</mi>\n </mrow>\n <annotation>$g: \\mathbb {C}\\rightarrow \\mathbb {T}$</annotation>\n </semantics></math> such that the concentric holomorphic discs <span></span><math>\n <semantics>\n <msub>\n <mrow>\n <mo>{</mo>\n <mi>g</mi>\n <mspace></mspace>\n <msub>\n <mo>|</mo>\n <msub>\n <mover>\n <mi>D</mi>\n <mo>¯</mo>\n </mover>\n <mi>r</mi>\n </msub>\n </msub>\n <mo>}</mo>\n </mrow>\n <mrow>\n <mi>r</mi>\n <mo>&gt;</mo>\n <mn>0</mn>\n </mrow>\n </msub>\n <annotation>$\\lbrace g\\,\\vert _{\\overline{\\mathbb {D}}_{r}}\\rbrace _{r&gt;0}$</annotation>\n </semantics></math> can generate all the Nevanlinna/Ahlfors currents on <span></span><math>\n <semantics>\n <mi>T</mi>\n <annotation>$\\mathbb {T}$</annotation>\n </semantics></math> at cohomological level. This confirms an anticipation of Sibony. Developing further our new method, we can construct some twisted entire curve <span></span><math>\n <semantics>\n <mrow>\n <mi>f</mi>\n <mo>:</mo>\n <mi>C</mi>\n <mo>→</mo>\n <msup>\n <mi>CP</mi>\n <mn>1</mn>\n </msup>\n <mo>×</mo>\n <mi>E</mi>\n </mrow>\n <annotation>$f: \\mathbb {C}\\rightarrow \\mathbb {CP}^1\\times E$</annotation>\n </semantics></math> in the product of the rational curve <span></span><math>\n <semantics>\n <msup>\n <mi>CP</mi>\n <mn>1</mn>\n </msup>\n <annotation>$\\mathbb {CP}^1$</annotation>\n </semantics></math> and an elliptic curve <span></span><math>\n <semantics>\n <mi>E</mi>\n <annotation>$E$</annotation>\n </semantics></math>, such that, concerning Siu's decomposition, demanding any cardinality <span></span><math>\n <semantics>\n <mrow>\n <mrow>\n <mo>|</mo>\n <mi>J</mi>\n <mo>|</mo>\n </mrow>\n <mo>∈</mo>\n <msub>\n <mi>Z</mi>\n <mrow>\n <mo>⩾</mo>\n <mn>0</mn>\n </mrow>\n </msub>\n <mo>∪</mo>\n <mrow>\n <mo>{</mo>\n <mi>∞</mi>\n <mo>}</mo>\n </mrow>\n </mrow>\n <annotation>$|J|\\in \\mathbb {Z}_{\\geqslant 0}\\cup \\lbrace \\infty \\rbrace$</annotation>\n </semantics></math> and that <span></span><math>\n <semantics>\n <msub>\n <mi>T</mi>\n <mi>diff</mi>\n </msub>\n <annotation>$\\mathcal {T}_{{\\rm diff}}$</annotation>\n </semantics></math> is trivial (<span></span><math>\n <semantics>\n <mrow>\n <mo>|</mo>\n <mi>J</mi>\n <mo>|</mo>\n <mo>⩾</mo>\n <mn>1</mn>\n </mrow>\n <annotation>$|J|\\geqslant 1$</annotation>\n </semantics></math>) or not (<span></span><math>\n <semantics>\n <mrow>\n <mo>|</mo>\n <mi>J</mi>\n <mo>|</mo>\n <mo>⩾</mo>\n <mn>0</mn>\n </mrow>\n <annotation>$|J|\\geqslant 0$</annotation>\n </semantics></math>), we can always find a sequence of concentric holomorphic discs <span></span><math>\n <semantics>\n <msub>\n <mrow>\n <mo>{</mo>\n <mi>f</mi>\n <mspace></mspace>\n <msub>\n <mo>|</mo>\n <msub>\n <mover>\n <mi>D</mi>\n <mo>¯</mo>\n </mover>\n <msub>\n <mi>r</mi>\n <mi>j</mi>\n </msub>\n </msub>\n </msub>\n <mo>}</mo>\n </mrow>\n <mrow>\n <mi>j</mi>\n <mo>⩾</mo>\n <mn>1</mn>\n </mrow>\n </msub>\n <annotation>$\\lbrace f\\,\\vert _{\\overline{\\mathbb {D}}_{r_j}}\\rbrace _{j \\geqslant 1}$</annotation>\n </semantics></math> to generate a Nevanlinna/Ahlfors current <span></span><math>\n <semantics>\n <mrow>\n <mi>T</mi>\n <mo>=</mo>\n <msub>\n <mi>T</mi>\n <mi>alg</mi>\n </msub>\n <mo>+</mo>\n <msub>\n <mi>T</mi>\n <mi>diff</mi>\n </msub>\n </mrow>\n <annotation>$\\mathcal {T}=\\mathcal {T}_{{\\rm alg}}+\\mathcal {T}_{{\\rm diff}}$</annotation>\n </semantics></math> with the singular part <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>T</mi>\n <mi>alg</mi>\n </msub>\n <mo>=</mo>\n <msub>\n <mo>∑</mo>\n <mrow>\n <mi>j</mi>\n <mo>∈</mo>\n <mi>J</mi>\n </mrow>\n </msub>\n <mspace></mspace>\n <msub>\n <mi>λ</mi>\n <mi>j</mi>\n </msub>\n <mo>·</mo>\n <mrow>\n <mo>[</mo>\n <msub>\n <mi>C</mi>\n <mi>j</mi>\n </msub>\n <mo>]</mo>\n </mrow>\n </mrow>\n <annotation>$\\mathcal {T}_{{\\rm alg}}=\\sum _{j\\in J} \\,\\lambda _j\\cdot [\\mathsf {C}_j]$</annotation>\n </semantics></math> in the desired shape. This fulfills the missing case where <span></span><math>\n <semantics>\n <mrow>\n <mo>|</mo>\n <mi>J</mi>\n <mo>|</mo>\n <mo>=</mo>\n <mn>0</mn>\n </mrow>\n <annotation>$|J|=0$</annotation>\n </semantics></math> in the previous work of Huynh–Xie. By a result of Duval, each <span></span><math>\n <semantics>\n <msub>\n <mi>C</mi>\n <mi>j</mi>\n </msub>\n <annotation>$\\mathsf {C}_j$</annotation>\n </semantics></math> must be rational or elliptic. We will show that there is no <i>a priori</i> restriction on the numbers of rational and elliptic components in the support of <span></span><math>\n <semantics>\n <msub>\n <mi>T</mi>\n <mi>alg</mi>\n </msub>\n <annotation>$\\mathcal {T}_{{\\rm alg}}$</annotation>\n </semantics></math>, thus answering a question of Yau and Zhou. Moreover, we will show that the positive coefficients <span></span><math>\n <semantics>\n <msub>\n <mrow>\n <mo>{</mo>\n <msub>\n <mi>λ</mi>\n <mi>j</mi>\n </msub>\n <mo>}</mo>\n </mrow>\n <mrow>\n <mi>j</mi>\n <mo>∈</mo>\n <mi>J</mi>\n </mrow>\n </msub>\n <annotation>$\\lbrace \\lambda _j\\rbrace _{j\\in J}$</annotation>\n </semantics></math> can be arbitrary as long as the total mass of <span></span><math>\n <semantics>\n <msub>\n <mi>T</mi>\n <mi>alg</mi>\n </msub>\n <annotation>$\\mathcal {T}_{{\\rm alg}}$</annotation>\n </semantics></math> is less than or equal to 1.</p>","PeriodicalId":49989,"journal":{"name":"Journal of the London Mathematical Society-Second Series","volume":"111 5","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2025-05-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the London Mathematical Society-Second Series","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1112/jlms.70177","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

First, we show that every complex torus T $\mathbb {T}$ contains some entire curve g : C T $g: \mathbb {C}\rightarrow \mathbb {T}$ such that the concentric holomorphic discs { g | D ¯ r } r > 0 $\lbrace g\,\vert _{\overline{\mathbb {D}}_{r}}\rbrace _{r>0}$ can generate all the Nevanlinna/Ahlfors currents on T $\mathbb {T}$ at cohomological level. This confirms an anticipation of Sibony. Developing further our new method, we can construct some twisted entire curve f : C CP 1 × E $f: \mathbb {C}\rightarrow \mathbb {CP}^1\times E$ in the product of the rational curve CP 1 $\mathbb {CP}^1$ and an elliptic curve E $E$ , such that, concerning Siu's decomposition, demanding any cardinality | J | Z 0 { } $|J|\in \mathbb {Z}_{\geqslant 0}\cup \lbrace \infty \rbrace$ and that T diff $\mathcal {T}_{{\rm diff}}$ is trivial ( | J | 1 $|J|\geqslant 1$ ) or not ( | J | 0 $|J|\geqslant 0$ ), we can always find a sequence of concentric holomorphic discs { f | D ¯ r j } j 1 $\lbrace f\,\vert _{\overline{\mathbb {D}}_{r_j}}\rbrace _{j \geqslant 1}$ to generate a Nevanlinna/Ahlfors current T = T alg + T diff $\mathcal {T}=\mathcal {T}_{{\rm alg}}+\mathcal {T}_{{\rm diff}}$ with the singular part T alg = j J λ j · [ C j ] $\mathcal {T}_{{\rm alg}}=\sum _{j\in J} \,\lambda _j\cdot [\mathsf {C}_j]$ in the desired shape. This fulfills the missing case where | J | = 0 $|J|=0$ in the previous work of Huynh–Xie. By a result of Duval, each C j $\mathsf {C}_j$ must be rational or elliptic. We will show that there is no a priori restriction on the numbers of rational and elliptic components in the support of T alg $\mathcal {T}_{{\rm alg}}$ , thus answering a question of Yau and Zhou. Moreover, we will show that the positive coefficients { λ j } j J $\lbrace \lambda _j\rbrace _{j\in J}$ can be arbitrary as long as the total mass of T alg $\mathcal {T}_{{\rm alg}}$ is less than or equal to 1.

整个曲线产生了各种形状的奈凡林纳电流
首先,我们证明了每一个复环T $\mathbb {T}$包含一些完整的曲线g:C→T $g: \mathbb {C}\rightarrow \mathbb {T}$使得同心全纯盘{g = 0 D¯r}R &gt;0 $\lbrace g\,\vert _{\overline{\mathbb {D}}_{r}}\rbrace _{r&gt;0}$可以产生T $\mathbb {T}$上所有的内万林纳/阿尔弗斯电流在上同调水平。这证实了人们对Sibony的期待。进一步发展我们的新方法,我们可以构造一些扭曲的整条曲线f:有理曲线CP 1 $\mathbb {CP}^1$与椭圆曲线E $E$之积C→CP 1 × E $f: \mathbb {C}\rightarrow \mathbb {CP}^1\times E$,有:关于Siu的分解,要求任意基数| J |∈Z小于0∪{∞}$|J|\in \mathbb {Z}_{\geqslant 0}\cup \lbrace \infty \rbrace$T差异$\mathcal {T}_{{\rm diff}}$是微不足道的(| J |小于1 $|J|\geqslant 1$)或不是(| J |小于0)$|J|\geqslant 0$),我们总能找到一个b| {D¯r j}的同心全纯盘序列j或小于1 $\lbrace f\,\vert _{\overline{\mathbb {D}}_{r_j}}\rbrace _{j \geqslant 1}$产生Nevanlinna/Ahlfors电流T = T algg + T diff$\mathcal {T}=\mathcal {T}_{{\rm alg}}+\mathcal {T}_{{\rm diff}}$奇异部分T =∑j∈j λ j·[C] $\mathcal {T}_{{\rm alg}}=\sum _{j\in J} \,\lambda _j\cdot [\mathsf {C}_j]$在理想的形状。 这填补了Huynh-Xie之前的工作中|J|=0$ |J|=0$的缺失情况。根据Duval的结果,每个C j$ \mathsf {C}_j$必须是有理数或椭圆的。我们将证明在talg $\mathcal {T}_{{\rm alg}}$的支持下,有理数和椭圆分量的个数没有先验限制,从而回答了Yau和Zhou的问题。此外,我们将证明,正系数{λ j} j∈j $\lbrace \lambda _j\rbrace _{j\in j}$可以是任意的,只要总质量T alg $\mathcal {T}_{{\rm alg}}$小于或等于1。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.90
自引率
0.00%
发文量
186
审稿时长
6-12 weeks
期刊介绍: The Journal of the London Mathematical Society has been publishing leading research in a broad range of mathematical subject areas since 1926. The Journal welcomes papers on subjects of general interest that represent a significant advance in mathematical knowledge, as well as submissions that are deemed to stimulate new interest and research activity.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信