The Temperley–Lieb tower and the Weyl algebra

IF 1 2区 数学 Q1 MATHEMATICS
Matthew Harper, Peter Samuelson
{"title":"The Temperley–Lieb tower and the Weyl algebra","authors":"Matthew Harper,&nbsp;Peter Samuelson","doi":"10.1112/jlms.70174","DOIUrl":null,"url":null,"abstract":"<p>We define a monoidal category <span></span><math>\n <semantics>\n <mi>W</mi>\n <annotation>${\\mathbf {W}}$</annotation>\n </semantics></math> and a closely related 2-category <span></span><math>\n <semantics>\n <mrow>\n <mn>2</mn>\n <mi>Weyl</mi>\n </mrow>\n <annotation>${\\mathbf {2Weyl}}$</annotation>\n </semantics></math> using diagrammatic methods. We show that <span></span><math>\n <semantics>\n <mrow>\n <mn>2</mn>\n <mi>Weyl</mi>\n </mrow>\n <annotation>${\\mathbf {2Weyl}}$</annotation>\n </semantics></math> acts on the category <span></span><math>\n <semantics>\n <mrow>\n <mi>TL</mi>\n <mo>:</mo>\n <mo>=</mo>\n <msub>\n <mo>⨁</mo>\n <mi>n</mi>\n </msub>\n <msub>\n <mo>TL</mo>\n <mi>n</mi>\n </msub>\n <mo>−</mo>\n <mi>mod</mi>\n </mrow>\n <annotation>$\\mathbf {TL}:=\\bigoplus _n \\operatorname{TL}_n\\mathrm{-mod}$</annotation>\n </semantics></math> of modules over Temperley–Lieb algebras, with its generating 1-morphisms acting by induction and restriction. The Grothendieck groups of <span></span><math>\n <semantics>\n <mi>W</mi>\n <annotation>${\\mathbf {W}}$</annotation>\n </semantics></math> and a third category we define <span></span><math>\n <semantics>\n <msup>\n <mi>W</mi>\n <mi>∞</mi>\n </msup>\n <annotation>${\\mathbf {W}}^\\infty$</annotation>\n </semantics></math> are closely related to the Weyl algebra. We formulate a sense in which <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>K</mi>\n <mn>0</mn>\n </msub>\n <mrow>\n <mo>(</mo>\n <msup>\n <mi>W</mi>\n <mi>∞</mi>\n </msup>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>$K_0({\\mathbf {W}}^\\infty)$</annotation>\n </semantics></math> acts asymptotically on <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>K</mi>\n <mn>0</mn>\n </msub>\n <mrow>\n <mo>(</mo>\n <mi>TL</mi>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>$K_0(\\mathbf {TL})$</annotation>\n </semantics></math>.</p>","PeriodicalId":49989,"journal":{"name":"Journal of the London Mathematical Society-Second Series","volume":"111 5","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2025-05-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1112/jlms.70174","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the London Mathematical Society-Second Series","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1112/jlms.70174","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We define a monoidal category W ${\mathbf {W}}$ and a closely related 2-category 2 Weyl ${\mathbf {2Weyl}}$ using diagrammatic methods. We show that 2 Weyl ${\mathbf {2Weyl}}$ acts on the category TL : = n TL n mod $\mathbf {TL}:=\bigoplus _n \operatorname{TL}_n\mathrm{-mod}$ of modules over Temperley–Lieb algebras, with its generating 1-morphisms acting by induction and restriction. The Grothendieck groups of W ${\mathbf {W}}$ and a third category we define W ${\mathbf {W}}^\infty$ are closely related to the Weyl algebra. We formulate a sense in which K 0 ( W ) $K_0({\mathbf {W}}^\infty)$ acts asymptotically on K 0 ( TL ) $K_0(\mathbf {TL})$ .

坦波利-利布塔和魏尔代数
我们用图解的方法定义了一个单类W ${\mathbf {W}}$和一个密切相关的2类2 Weyl ${\mathbf {2Weyl}}$。我们证明2 Weyl ${\mathbf {2Weyl}}$作用于类别TL:templeley - lieb代数上的模的= n TL n - mod $\mathbf {TL}:=\bigoplus _n \operatorname{TL}_n\mathrm{-mod}$,其生成的1-态由归纳和限制作用。W ${\mathbf {W}}$的Grothendieck群和我们定义的第三类W∞${\mathbf {W}}^\infty$与Weyl代数密切相关。我们给出了K 0 (W∞)$K_0({\mathbf {W}}^\infty)$作用于渐近的意义k0 (TL) $K_0(\mathbf {TL})$。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.90
自引率
0.00%
发文量
186
审稿时长
6-12 weeks
期刊介绍: The Journal of the London Mathematical Society has been publishing leading research in a broad range of mathematical subject areas since 1926. The Journal welcomes papers on subjects of general interest that represent a significant advance in mathematical knowledge, as well as submissions that are deemed to stimulate new interest and research activity.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信