{"title":"The Temperley–Lieb tower and the Weyl algebra","authors":"Matthew Harper, Peter Samuelson","doi":"10.1112/jlms.70174","DOIUrl":null,"url":null,"abstract":"<p>We define a monoidal category <span></span><math>\n <semantics>\n <mi>W</mi>\n <annotation>${\\mathbf {W}}$</annotation>\n </semantics></math> and a closely related 2-category <span></span><math>\n <semantics>\n <mrow>\n <mn>2</mn>\n <mi>Weyl</mi>\n </mrow>\n <annotation>${\\mathbf {2Weyl}}$</annotation>\n </semantics></math> using diagrammatic methods. We show that <span></span><math>\n <semantics>\n <mrow>\n <mn>2</mn>\n <mi>Weyl</mi>\n </mrow>\n <annotation>${\\mathbf {2Weyl}}$</annotation>\n </semantics></math> acts on the category <span></span><math>\n <semantics>\n <mrow>\n <mi>TL</mi>\n <mo>:</mo>\n <mo>=</mo>\n <msub>\n <mo>⨁</mo>\n <mi>n</mi>\n </msub>\n <msub>\n <mo>TL</mo>\n <mi>n</mi>\n </msub>\n <mo>−</mo>\n <mi>mod</mi>\n </mrow>\n <annotation>$\\mathbf {TL}:=\\bigoplus _n \\operatorname{TL}_n\\mathrm{-mod}$</annotation>\n </semantics></math> of modules over Temperley–Lieb algebras, with its generating 1-morphisms acting by induction and restriction. The Grothendieck groups of <span></span><math>\n <semantics>\n <mi>W</mi>\n <annotation>${\\mathbf {W}}$</annotation>\n </semantics></math> and a third category we define <span></span><math>\n <semantics>\n <msup>\n <mi>W</mi>\n <mi>∞</mi>\n </msup>\n <annotation>${\\mathbf {W}}^\\infty$</annotation>\n </semantics></math> are closely related to the Weyl algebra. We formulate a sense in which <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>K</mi>\n <mn>0</mn>\n </msub>\n <mrow>\n <mo>(</mo>\n <msup>\n <mi>W</mi>\n <mi>∞</mi>\n </msup>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>$K_0({\\mathbf {W}}^\\infty)$</annotation>\n </semantics></math> acts asymptotically on <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>K</mi>\n <mn>0</mn>\n </msub>\n <mrow>\n <mo>(</mo>\n <mi>TL</mi>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>$K_0(\\mathbf {TL})$</annotation>\n </semantics></math>.</p>","PeriodicalId":49989,"journal":{"name":"Journal of the London Mathematical Society-Second Series","volume":"111 5","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2025-05-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1112/jlms.70174","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the London Mathematical Society-Second Series","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1112/jlms.70174","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
We define a monoidal category and a closely related 2-category using diagrammatic methods. We show that acts on the category of modules over Temperley–Lieb algebras, with its generating 1-morphisms acting by induction and restriction. The Grothendieck groups of and a third category we define are closely related to the Weyl algebra. We formulate a sense in which acts asymptotically on .
期刊介绍:
The Journal of the London Mathematical Society has been publishing leading research in a broad range of mathematical subject areas since 1926. The Journal welcomes papers on subjects of general interest that represent a significant advance in mathematical knowledge, as well as submissions that are deemed to stimulate new interest and research activity.