Xinyi Yuan, Haiyi Xu, Xingwu Liu, Jicong Zhang, Jing Li, Qianyi Liang, Bolin An, Giuseppe Maria Paternò, Minyue Zhang, Yuqing Tang, Chen Zhang, Dake Xu, Chao Zhong, Ke Li, Xinyu Wang
{"title":"Engineered Living Energy Materials","authors":"Xinyi Yuan, Haiyi Xu, Xingwu Liu, Jicong Zhang, Jing Li, Qianyi Liang, Bolin An, Giuseppe Maria Paternò, Minyue Zhang, Yuqing Tang, Chen Zhang, Dake Xu, Chao Zhong, Ke Li, Xinyu Wang","doi":"10.1002/idm2.12245","DOIUrl":null,"url":null,"abstract":"<p>To foster sustainable development, a pivotal trend lies in harnessing sustainable energy supplies that propel modern economic and societal progress. Recent advancements in living materials for energy applications have sparked a groundbreaking research area: engineered living energy materials (ELEMs), which seamlessly integrate biological and artificial systems for efficient energy conversion and storage. To consolidate and propel this research area, herein, we summarize and delve into the evolution of ELEMs. Firstly, we provide an overview of the structural features and energy conversion mechanisms employed by bio-modules spanning proteins, organelles, and entire organisms. They can be directly used as components for constructing ELEMs or provide inspirations for the design of such entities. Then, we comprehensively review the latest research strides in ELEMs based on their distinct energy conversion modes. Finally, we discuss the challenges confronting ELEMs and envision their future trajectories. The progress of ELEMs holds immense potential to catalyze interdisciplinary research endeavors encompassing medicine, environmental science, and energy technologies.</p>","PeriodicalId":100685,"journal":{"name":"Interdisciplinary Materials","volume":"4 3","pages":"412-455"},"PeriodicalIF":24.5000,"publicationDate":"2025-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/idm2.12245","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Interdisciplinary Materials","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/idm2.12245","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
To foster sustainable development, a pivotal trend lies in harnessing sustainable energy supplies that propel modern economic and societal progress. Recent advancements in living materials for energy applications have sparked a groundbreaking research area: engineered living energy materials (ELEMs), which seamlessly integrate biological and artificial systems for efficient energy conversion and storage. To consolidate and propel this research area, herein, we summarize and delve into the evolution of ELEMs. Firstly, we provide an overview of the structural features and energy conversion mechanisms employed by bio-modules spanning proteins, organelles, and entire organisms. They can be directly used as components for constructing ELEMs or provide inspirations for the design of such entities. Then, we comprehensively review the latest research strides in ELEMs based on their distinct energy conversion modes. Finally, we discuss the challenges confronting ELEMs and envision their future trajectories. The progress of ELEMs holds immense potential to catalyze interdisciplinary research endeavors encompassing medicine, environmental science, and energy technologies.