{"title":"Effects of Different Environmental Stressors on Marine Biogenic Sulfur Compounds in the Northwest Pacific and Eastern Indian Oceans","authors":"Feng Xu, Xiao-Song Zhong, Hong-Hai Zhang, Jin-Wei Wu, Gao-Bin Xu, Shi-Bo Yan, Jian Wang, Xiao-Jun Li, Gui-Peng Yang","doi":"10.1029/2024GL113603","DOIUrl":null,"url":null,"abstract":"<p>Key roles of marine dimethyl sulfoniopropionate (DMSP), dimethyl sulfide (DMS), methyl mercaptan (MeSH), and carbon disulfide (CS<sub>2</sub>) in the sulfur cycle and/or atmospheric chemistry, alongside the rapid environmental changes in marine ecosystems, underscore the need to understand their responses to dynamic ecosystem shifts. We conducted two ship-based incubation experiments in the Northwest Pacific and Eastern Indian Oceans to explore how dust deposition, ocean acidification, and microplastic exposure impact these compounds. Our results demonstrate that these stressors not only alter phytoplankton community but also modify per-cell DMSP production capacity and DMSP degradation pathways, subsequently influencing DMSP, DMS, and MeSH concentrations. CS<sub>2</sub>'s response closely mirrors phytoplankton abundance and species. Initial physical-chemical conditions, such as carbonate system and nutrient availability, may mediate the sensitivity of phytoplankton and sulfur compounds to environmental shifts. This study enhances our understanding of biogenic sulfur responses in dynamic marine ecosystems and provides essential basis for future climate modeling.</p>","PeriodicalId":12523,"journal":{"name":"Geophysical Research Letters","volume":"52 10","pages":""},"PeriodicalIF":4.6000,"publicationDate":"2025-05-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024GL113603","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geophysical Research Letters","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2024GL113603","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Key roles of marine dimethyl sulfoniopropionate (DMSP), dimethyl sulfide (DMS), methyl mercaptan (MeSH), and carbon disulfide (CS2) in the sulfur cycle and/or atmospheric chemistry, alongside the rapid environmental changes in marine ecosystems, underscore the need to understand their responses to dynamic ecosystem shifts. We conducted two ship-based incubation experiments in the Northwest Pacific and Eastern Indian Oceans to explore how dust deposition, ocean acidification, and microplastic exposure impact these compounds. Our results demonstrate that these stressors not only alter phytoplankton community but also modify per-cell DMSP production capacity and DMSP degradation pathways, subsequently influencing DMSP, DMS, and MeSH concentrations. CS2's response closely mirrors phytoplankton abundance and species. Initial physical-chemical conditions, such as carbonate system and nutrient availability, may mediate the sensitivity of phytoplankton and sulfur compounds to environmental shifts. This study enhances our understanding of biogenic sulfur responses in dynamic marine ecosystems and provides essential basis for future climate modeling.
期刊介绍:
Geophysical Research Letters (GRL) publishes high-impact, innovative, and timely research on major scientific advances in all the major geoscience disciplines. Papers are communications-length articles and should have broad and immediate implications in their discipline or across the geosciences. GRLmaintains the fastest turn-around of all high-impact publications in the geosciences and works closely with authors to ensure broad visibility of top papers.