Guangcheng Shi, Xiaojie Yang, Fan Yang, Zhigang Tao, Xiaoyu Zhang, Jie Dong
{"title":"Instability mechanism and control measures of loess slope induced by heavy rainfall","authors":"Guangcheng Shi, Xiaojie Yang, Fan Yang, Zhigang Tao, Xiaoyu Zhang, Jie Dong","doi":"10.1002/esp.70088","DOIUrl":null,"url":null,"abstract":"<p>Loess slopes are susceptible to rainfall due to the water sensitivity and collapsibility of loess. The aim of this study is to investigate the instability mode, failure mechanism and control effect of homogeneous loess landslide under rainfall by using physical model experiments and numerical simulation, combined with a new anchor cable with negative Poisson ratio (NPR) structural effect. The findings indicated that the loess slope's failure under heavy rainfall is characterized by progressive shallow flow-slip instability, encompassing three deformation modes and seven deformation characteristics. Water content, pore water pressure and earth pressure monitoring instruments capture the dynamic response of internal hydromechanical properties within the loess slope during intermittent heavy rainfall, clarifying its failure mechanism. Rainfall leads to soil softening and a reduction in strength. The effective stress of shallow soil and potential sliding surfaces diminishes due to decreased matrix suction and increased pore water pressure. The accumulation of internal and external deformation eventually leads to the disintegration of the shallow layer of the loess slope. Numerical simulation results indicated that rainfall significantly affects the shallow layer of the loess slope, with greater subsidence deformation observed at the slope's crest. Indoor and field monitoring findings revealed the pattern of Newton force on the loess slope in response to rainfall and demonstrated its seasonal dynamics, characterized by an increase during the thaw-collapse and flood periods, followed by a decrease in the frost-heave period.</p>","PeriodicalId":11408,"journal":{"name":"Earth Surface Processes and Landforms","volume":"50 6","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2025-05-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Earth Surface Processes and Landforms","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/esp.70088","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOGRAPHY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Loess slopes are susceptible to rainfall due to the water sensitivity and collapsibility of loess. The aim of this study is to investigate the instability mode, failure mechanism and control effect of homogeneous loess landslide under rainfall by using physical model experiments and numerical simulation, combined with a new anchor cable with negative Poisson ratio (NPR) structural effect. The findings indicated that the loess slope's failure under heavy rainfall is characterized by progressive shallow flow-slip instability, encompassing three deformation modes and seven deformation characteristics. Water content, pore water pressure and earth pressure monitoring instruments capture the dynamic response of internal hydromechanical properties within the loess slope during intermittent heavy rainfall, clarifying its failure mechanism. Rainfall leads to soil softening and a reduction in strength. The effective stress of shallow soil and potential sliding surfaces diminishes due to decreased matrix suction and increased pore water pressure. The accumulation of internal and external deformation eventually leads to the disintegration of the shallow layer of the loess slope. Numerical simulation results indicated that rainfall significantly affects the shallow layer of the loess slope, with greater subsidence deformation observed at the slope's crest. Indoor and field monitoring findings revealed the pattern of Newton force on the loess slope in response to rainfall and demonstrated its seasonal dynamics, characterized by an increase during the thaw-collapse and flood periods, followed by a decrease in the frost-heave period.
期刊介绍:
Earth Surface Processes and Landforms is an interdisciplinary international journal concerned with:
the interactions between surface processes and landforms and landscapes;
that lead to physical, chemical and biological changes; and which in turn create;
current landscapes and the geological record of past landscapes.
Its focus is core to both physical geographical and geological communities, and also the wider geosciences