Investigation of electrical parameters in extended source epitaxial layer DG-TFET including interface trap charges and temperatures

IF 1.2 4区 工程技术 Q4 COMPUTER SCIENCE, HARDWARE & ARCHITECTURE
Rajesh Saha, Shridev Devji, Shanidul Hoque, Brinda Bhowmick, Srimanta Baishya
{"title":"Investigation of electrical parameters in extended source epitaxial layer DG-TFET including interface trap charges and temperatures","authors":"Rajesh Saha,&nbsp;Shridev Devji,&nbsp;Shanidul Hoque,&nbsp;Brinda Bhowmick,&nbsp;Srimanta Baishya","doi":"10.1007/s10470-025-02428-7","DOIUrl":null,"url":null,"abstract":"<div><p>In this work, we have highlighted the electrical parameters of extended source epitaxial layer double gate TFET (ESETL-DGTFET) for the wide variation in temperatures and interface trap charge density. The DC, RF/analog, and linearity behaviour are reported for variation in positive interface trap charge (PITC)/ negative interface trap charge (NITC) along with wide temperature variations (250–400) K using TCAD simulator. It is seen that PITC improved the electrical parameters like current ratio, cut-off frequency, linearity behaviour, whereas, NITC degrades the same. The degradation in OFF state current at low gate bias with increased temperature is due SRH rate is exponentially dependent on temperature, whereas, band to band tunnelling (BTBT) rate is weak dependence of temperature leads to negligible variation in drain current at high gate bias. With increased temperature, the current ratio degrades and delay improved for both PITC and NITC. The temperature sensitivity is improved in presence of PITC compared to NITC.</p></div>","PeriodicalId":7827,"journal":{"name":"Analog Integrated Circuits and Signal Processing","volume":"124 1","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2025-05-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analog Integrated Circuits and Signal Processing","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10470-025-02428-7","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0

Abstract

In this work, we have highlighted the electrical parameters of extended source epitaxial layer double gate TFET (ESETL-DGTFET) for the wide variation in temperatures and interface trap charge density. The DC, RF/analog, and linearity behaviour are reported for variation in positive interface trap charge (PITC)/ negative interface trap charge (NITC) along with wide temperature variations (250–400) K using TCAD simulator. It is seen that PITC improved the electrical parameters like current ratio, cut-off frequency, linearity behaviour, whereas, NITC degrades the same. The degradation in OFF state current at low gate bias with increased temperature is due SRH rate is exponentially dependent on temperature, whereas, band to band tunnelling (BTBT) rate is weak dependence of temperature leads to negligible variation in drain current at high gate bias. With increased temperature, the current ratio degrades and delay improved for both PITC and NITC. The temperature sensitivity is improved in presence of PITC compared to NITC.

扩展源外延层DG-TFET的电学参数研究,包括界面陷阱电荷和温度
在这项工作中,我们强调了扩展源外延层双栅TFET (ESETL-DGTFET)的电学参数在温度和界面陷阱电荷密度的广泛变化。使用TCAD模拟器,报告了直流,RF/模拟和线性行为在正界面陷阱电荷(PITC)/负界面陷阱电荷(NITC)以及宽温度变化(250-400)K时的变化。可以看出,PITC改善了电流比、截止频率、线性行为等电气参数,而NITC则降低了这些参数。低栅极偏压下的关断电流随温度升高而下降是由于SRH速率与温度呈指数关系,而高栅极偏压下的带间隧穿速率对温度的依赖性较弱,导致漏极电流的变化可以忽略不计。随着温度的升高,PITC和NITC的电流比降低,延迟提高。与NITC相比,PITC的存在提高了温度灵敏度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Analog Integrated Circuits and Signal Processing
Analog Integrated Circuits and Signal Processing 工程技术-工程:电子与电气
CiteScore
0.30
自引率
7.10%
发文量
141
审稿时长
7.3 months
期刊介绍: Analog Integrated Circuits and Signal Processing is an archival peer reviewed journal dedicated to the design and application of analog, radio frequency (RF), and mixed signal integrated circuits (ICs) as well as signal processing circuits and systems. It features both new research results and tutorial views and reflects the large volume of cutting-edge research activity in the worldwide field today. A partial list of topics includes analog and mixed signal interface circuits and systems; analog and RFIC design; data converters; active-RC, switched-capacitor, and continuous-time integrated filters; mixed analog/digital VLSI systems; wireless radio transceivers; clock and data recovery circuits; and high speed optoelectronic circuits and systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信