{"title":"The biomechanical phenomena observed in the cell invasion pathway of porcine epidemic diarrhea virus: a review","authors":"Hong Zou, Yi Wang, Gan Luo, Shilei Huang","doi":"10.1007/s00705-025-06326-1","DOIUrl":null,"url":null,"abstract":"<div><p>Porcine epidemic diarrhea virus (PEDV) is the primary pathogen responsible for highly contagious intestinal infections in pigs, which results in significant economic losses to the global animal husbandry industry. PEDV is an enveloped virus that enters cells via endocytosis, a process that is dependent on the binding of the viral surface S protein to a receptor on the host cell membrane. This results in a series of biomechanical alterations that drive the fusion of the viral and host cell membranes. These alterations stabilise the binding of the virus to the receptor and also affect the tension and the curvature of the plasma membrane and the formation of endocytic vesicles. A comprehensive understanding of the mechanism by which PEDV enters cells and the biomechanical changes that accompany this process is of paramount importance for the development of PEDV inhibitors, vaccines, and disease prevention and control strategies. Here, we review the general mechanism of PEDV entry, the biomechanical phenomena that occur during endocytosis, and the potential applications of biomechanics in antiviral therapy. It is anticipated that by gaining insight into these mechanisms, novel approaches to regulating viral entry pathways through mechanical interference, vaccine development, and antiviral drug design can be explored.</p></div>","PeriodicalId":8359,"journal":{"name":"Archives of Virology","volume":"170 7","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2025-05-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archives of Virology","FirstCategoryId":"3","ListUrlMain":"https://link.springer.com/article/10.1007/s00705-025-06326-1","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"VIROLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Porcine epidemic diarrhea virus (PEDV) is the primary pathogen responsible for highly contagious intestinal infections in pigs, which results in significant economic losses to the global animal husbandry industry. PEDV is an enveloped virus that enters cells via endocytosis, a process that is dependent on the binding of the viral surface S protein to a receptor on the host cell membrane. This results in a series of biomechanical alterations that drive the fusion of the viral and host cell membranes. These alterations stabilise the binding of the virus to the receptor and also affect the tension and the curvature of the plasma membrane and the formation of endocytic vesicles. A comprehensive understanding of the mechanism by which PEDV enters cells and the biomechanical changes that accompany this process is of paramount importance for the development of PEDV inhibitors, vaccines, and disease prevention and control strategies. Here, we review the general mechanism of PEDV entry, the biomechanical phenomena that occur during endocytosis, and the potential applications of biomechanics in antiviral therapy. It is anticipated that by gaining insight into these mechanisms, novel approaches to regulating viral entry pathways through mechanical interference, vaccine development, and antiviral drug design can be explored.
期刊介绍:
Archives of Virology publishes original contributions from all branches of research on viruses, virus-like agents, and virus infections of humans, animals, plants, insects, and bacteria. Coverage spans a broad spectrum of topics, from descriptions of newly discovered viruses, to studies of virus structure, composition, and genetics, to studies of virus interactions with host cells, organisms and populations. Studies employ molecular biologic, molecular genetics, and current immunologic and epidemiologic approaches. Contents include studies on the molecular pathogenesis, pathophysiology, and genetics of virus infections in individual hosts, and studies on the molecular epidemiology of virus infections in populations. Also included are studies involving applied research such as diagnostic technology development, monoclonal antibody panel development, vaccine development, and antiviral drug development.Archives of Virology wishes to publish obituaries of recently deceased well-known virologists and leading figures in virology.