The biomechanical phenomena observed in the cell invasion pathway of porcine epidemic diarrhea virus: a review

IF 2.5 4区 医学 Q3 VIROLOGY
Hong Zou, Yi Wang, Gan Luo, Shilei Huang
{"title":"The biomechanical phenomena observed in the cell invasion pathway of porcine epidemic diarrhea virus: a review","authors":"Hong Zou,&nbsp;Yi Wang,&nbsp;Gan Luo,&nbsp;Shilei Huang","doi":"10.1007/s00705-025-06326-1","DOIUrl":null,"url":null,"abstract":"<div><p>Porcine epidemic diarrhea virus (PEDV) is the primary pathogen responsible for highly contagious intestinal infections in pigs, which results in significant economic losses to the global animal husbandry industry. PEDV is an enveloped virus that enters cells via endocytosis, a process that is dependent on the binding of the viral surface S protein to a receptor on the host cell membrane. This results in a series of biomechanical alterations that drive the fusion of the viral and host cell membranes. These alterations stabilise the binding of the virus to the receptor and also affect the tension and the curvature of the plasma membrane and the formation of endocytic vesicles. A comprehensive understanding of the mechanism by which PEDV enters cells and the biomechanical changes that accompany this process is of paramount importance for the development of PEDV inhibitors, vaccines, and disease prevention and control strategies. Here, we review the general mechanism of PEDV entry, the biomechanical phenomena that occur during endocytosis, and the potential applications of biomechanics in antiviral therapy. It is anticipated that by gaining insight into these mechanisms, novel approaches to regulating viral entry pathways through mechanical interference, vaccine development, and antiviral drug design can be explored.</p></div>","PeriodicalId":8359,"journal":{"name":"Archives of Virology","volume":"170 7","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2025-05-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archives of Virology","FirstCategoryId":"3","ListUrlMain":"https://link.springer.com/article/10.1007/s00705-025-06326-1","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"VIROLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Porcine epidemic diarrhea virus (PEDV) is the primary pathogen responsible for highly contagious intestinal infections in pigs, which results in significant economic losses to the global animal husbandry industry. PEDV is an enveloped virus that enters cells via endocytosis, a process that is dependent on the binding of the viral surface S protein to a receptor on the host cell membrane. This results in a series of biomechanical alterations that drive the fusion of the viral and host cell membranes. These alterations stabilise the binding of the virus to the receptor and also affect the tension and the curvature of the plasma membrane and the formation of endocytic vesicles. A comprehensive understanding of the mechanism by which PEDV enters cells and the biomechanical changes that accompany this process is of paramount importance for the development of PEDV inhibitors, vaccines, and disease prevention and control strategies. Here, we review the general mechanism of PEDV entry, the biomechanical phenomena that occur during endocytosis, and the potential applications of biomechanics in antiviral therapy. It is anticipated that by gaining insight into these mechanisms, novel approaches to regulating viral entry pathways through mechanical interference, vaccine development, and antiviral drug design can be explored.

猪流行性腹泻病毒细胞侵袭途径的生物力学现象综述
猪流行性腹泻病毒(PEDV)是引起猪高度传染性肠道感染的主要病原体,给全球畜牧业造成重大经济损失。PEDV是一种包膜病毒,通过内吞作用进入细胞,这一过程依赖于病毒表面S蛋白与宿主细胞膜上的受体结合。这导致了一系列的生物力学变化,推动病毒和宿主细胞膜的融合。这些改变稳定了病毒与受体的结合,也影响了质膜的张力和曲率以及内吞囊泡的形成。全面了解PEDV进入细胞的机制以及伴随这一过程的生物力学变化对PEDV抑制剂、疫苗和疾病预防和控制策略的开发至关重要。在此,我们综述了PEDV进入的一般机制、内吞过程中发生的生物力学现象以及生物力学在抗病毒治疗中的潜在应用。预计通过深入了解这些机制,可以探索通过机械干扰、疫苗开发和抗病毒药物设计来调节病毒进入途径的新方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Archives of Virology
Archives of Virology 医学-病毒学
CiteScore
5.10
自引率
7.40%
发文量
324
审稿时长
4.5 months
期刊介绍: Archives of Virology publishes original contributions from all branches of research on viruses, virus-like agents, and virus infections of humans, animals, plants, insects, and bacteria. Coverage spans a broad spectrum of topics, from descriptions of newly discovered viruses, to studies of virus structure, composition, and genetics, to studies of virus interactions with host cells, organisms and populations. Studies employ molecular biologic, molecular genetics, and current immunologic and epidemiologic approaches. Contents include studies on the molecular pathogenesis, pathophysiology, and genetics of virus infections in individual hosts, and studies on the molecular epidemiology of virus infections in populations. Also included are studies involving applied research such as diagnostic technology development, monoclonal antibody panel development, vaccine development, and antiviral drug development.Archives of Virology wishes to publish obituaries of recently deceased well-known virologists and leading figures in virology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信