Enhanced visible light photocatalytic H2 production on ZnMn2O4

IF 1.7 4区 化学 Q4 CHEMISTRY, PHYSICAL
S. Douafer, H. Lahmar, M. Benamira, R. Laouici, A. Sahmi, M. Trari
{"title":"Enhanced visible light photocatalytic H2 production on ZnMn2O4","authors":"S. Douafer,&nbsp;H. Lahmar,&nbsp;M. Benamira,&nbsp;R. Laouici,&nbsp;A. Sahmi,&nbsp;M. Trari","doi":"10.1007/s11144-025-02807-1","DOIUrl":null,"url":null,"abstract":"<div><p>This work highlights the development of nanocrystalline ZnMn<sub>2</sub>O<sub>4</sub>, synthesized via a sol–gel route, as a visible-light-active photocatalyst for hydrogen production. Structural characterization through X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and FT-IR spectroscopy confirmed the formation of a single-phase cubic spinel structure. Scanning electron microscopy (SEM) revealed grains with uniform morphology, while the BET analysis showed a specific surface area of 27.75 m<sup>2</sup>/g and a pore volume of 0.2 cm<sup>3</sup>/g. The material exhibits an optical bandgap of 1.33 eV, attributed to Mn<sup>3+</sup> 3d orbital splitting, and displays p-type behavior, with a flat band potential (E<sub>fb</sub>) of 0.18 V vs. SCE, as determined from capacitance-potential measurements. The current–potential profile resembles a chemical diode, supporting a redox potential near − 0.7 V vs. SCE and low hydrogen overvoltage. Under optimal conditions (pH ~ 12, 50 °C, light flux of 28 mW/cm<sup>2</sup>), ZnMn<sub>2</sub>O<sub>4</sub> achieved a hydrogen evolution rate of 0.32 μmol min<sup>−1</sup> g<sup>−1</sup> and a quantum efficiency of 0.79% using S<sub>2</sub>O<sub>3</sub><sup>2−</sup> as a reducing agent. ZnMn<sub>2</sub>O<sub>4</sub> demonstrated excellent stability and reusability over successive runs. These findings highlight the catalyst's potential as an affordable material for solar-powered hydrogen production, paving the way for efficient renewable energy systems.</p></div>","PeriodicalId":750,"journal":{"name":"Reaction Kinetics, Mechanisms and Catalysis","volume":"138 3","pages":"1845 - 1860"},"PeriodicalIF":1.7000,"publicationDate":"2025-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Reaction Kinetics, Mechanisms and Catalysis","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s11144-025-02807-1","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

This work highlights the development of nanocrystalline ZnMn2O4, synthesized via a sol–gel route, as a visible-light-active photocatalyst for hydrogen production. Structural characterization through X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and FT-IR spectroscopy confirmed the formation of a single-phase cubic spinel structure. Scanning electron microscopy (SEM) revealed grains with uniform morphology, while the BET analysis showed a specific surface area of 27.75 m2/g and a pore volume of 0.2 cm3/g. The material exhibits an optical bandgap of 1.33 eV, attributed to Mn3+ 3d orbital splitting, and displays p-type behavior, with a flat band potential (Efb) of 0.18 V vs. SCE, as determined from capacitance-potential measurements. The current–potential profile resembles a chemical diode, supporting a redox potential near − 0.7 V vs. SCE and low hydrogen overvoltage. Under optimal conditions (pH ~ 12, 50 °C, light flux of 28 mW/cm2), ZnMn2O4 achieved a hydrogen evolution rate of 0.32 μmol min−1 g−1 and a quantum efficiency of 0.79% using S2O32− as a reducing agent. ZnMn2O4 demonstrated excellent stability and reusability over successive runs. These findings highlight the catalyst's potential as an affordable material for solar-powered hydrogen production, paving the way for efficient renewable energy systems.

ZnMn2O4增强可见光催化制氢
通过溶胶-凝胶法合成纳米晶ZnMn2O4,作为一种用于制氢的可见光活性光催化剂。通过x射线衍射(XRD)、x射线光电子能谱(XPS)和傅里叶变换红外光谱(FT-IR)对结构进行表征,证实形成了单相立方尖晶石结构。扫描电镜(SEM)显示晶粒形貌均匀,BET分析显示比表面积为27.75 m2/g,孔体积为0.2 cm3/g。该材料表现出1.33 eV的光学带隙,归因于Mn3+ 3d轨道分裂,并表现出p型行为,与SCE相比,其平带电位(Efb)为0.18 V,由电容电位测量确定。电流-电位分布类似于一个化学二极管,支持氧化还原电位接近- 0.7 V vs. SCE和低氢过电压。在最佳条件下(pH ~ 12, 50℃,光通量28 mW/cm2),以S2O32−为还原剂,ZnMn2O4的析氢速率为0.32 μmol min−1 g−1,量子效率为0.79%。ZnMn2O4在连续运行中表现出优异的稳定性和可重用性。这些发现突出了催化剂作为太阳能制氢的廉价材料的潜力,为高效的可再生能源系统铺平了道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.30
自引率
5.60%
发文量
201
审稿时长
2.8 months
期刊介绍: Reaction Kinetics, Mechanisms and Catalysis is a medium for original contributions in the following fields: -kinetics of homogeneous reactions in gas, liquid and solid phase; -Homogeneous catalysis; -Heterogeneous catalysis; -Adsorption in heterogeneous catalysis; -Transport processes related to reaction kinetics and catalysis; -Preparation and study of catalysts; -Reactors and apparatus. Reaction Kinetics, Mechanisms and Catalysis was formerly published under the title Reaction Kinetics and Catalysis Letters.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信