Rigorous Lower Bound of the Dynamical Critical Exponent of the Ising Model

IF 1.3 3区 物理与天体物理 Q3 PHYSICS, MATHEMATICAL
Rintaro Masaoka, Tomohiro Soejima, Haruki Watanabe
{"title":"Rigorous Lower Bound of the Dynamical Critical Exponent of the Ising Model","authors":"Rintaro Masaoka,&nbsp;Tomohiro Soejima,&nbsp;Haruki Watanabe","doi":"10.1007/s10955-025-03456-3","DOIUrl":null,"url":null,"abstract":"<div><p>We study the kinetic Ising model under Glauber dynamics and establish an upper bound on the spectral gap for finite systems. This bound implies the critical exponent inequality <span>\\(z \\ge 2\\)</span>, thereby rigorously improving the previously known estimate <span>\\(z \\ge 2 - \\eta \\)</span>. Our proof relies on the mapping from stochastic processes to frustration-free quantum systems and leverages the Simon–Lieb and Gosset–Huang inequalities.</p></div>","PeriodicalId":667,"journal":{"name":"Journal of Statistical Physics","volume":"192 6","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2025-05-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10955-025-03456-3.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Statistical Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s10955-025-03456-3","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 0

Abstract

We study the kinetic Ising model under Glauber dynamics and establish an upper bound on the spectral gap for finite systems. This bound implies the critical exponent inequality \(z \ge 2\), thereby rigorously improving the previously known estimate \(z \ge 2 - \eta \). Our proof relies on the mapping from stochastic processes to frustration-free quantum systems and leverages the Simon–Lieb and Gosset–Huang inequalities.

Ising模型动力学临界指数的严格下界
研究了格劳伯动力学下的动力学Ising模型,建立了有限系统谱隙的上界。这个界暗示了临界指数不等式\(z \ge 2\),从而严格地改进了先前已知的估计\(z \ge 2 - \eta \)。我们的证明依赖于从随机过程到无挫折量子系统的映射,并利用Simon-Lieb和Gosset-Huang不等式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Statistical Physics
Journal of Statistical Physics 物理-物理:数学物理
CiteScore
3.10
自引率
12.50%
发文量
152
审稿时长
3-6 weeks
期刊介绍: The Journal of Statistical Physics publishes original and invited review papers in all areas of statistical physics as well as in related fields concerned with collective phenomena in physical systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信