Ettore Budassi, Carlo M. Carloni Calame, Marco Ghilardi, Andrea Gurgone, Guido Montagna, Mauro Moretti, Oreste Nicrosini, Fulvio Piccinini, Francesco P. Ucci
{"title":"Pion pair production in e+e− annihilation at next-to-leading order matched to Parton Shower","authors":"Ettore Budassi, Carlo M. Carloni Calame, Marco Ghilardi, Andrea Gurgone, Guido Montagna, Mauro Moretti, Oreste Nicrosini, Fulvio Piccinini, Francesco P. Ucci","doi":"10.1007/JHEP05(2025)196","DOIUrl":null,"url":null,"abstract":"<p>The pion pair production in <i>e</i><sup>+</sup><i>e</i><sup>−</sup> annihilation at flavour factories plays a crucial role in the determination of the hadronic contribution to the muon anomalous magnetic moment. The recent CMD-3 measurement of the pion form factor via energy scan displays a significant difference with the previous experimental determinations. In order to contribute to an improved theoretical description and simulation of energy scan experiments, we present a calculation of the <i>e</i><sup>+</sup><i>e</i><sup>−</sup> → <i>π</i><sup>+</sup><i>π</i><sup>−</sup>(<i>γ</i>) hadronic channel at next-to-leading order matched to a Parton Shower algorithm in QED and sQED. According to the recent advances in the literature, particular attention is paid to the treatment of the pion composite structure in loop diagrams beyond the commonly used factorised sQED approach, as well as to the modelling of multiple photon radiation through the Parton Shower algorithm. In particular, we carry out a detailed discussion on the inclusion of the pion form factor in the virtual sQED corrections according to two independent methods, inspired by the generalised vector meson dominance model and the dispersive approach, respectively. We find the two methods to be in remarkable agreement. We show phenomenological results for inclusive and differential observables which are relevant for precision energy scan measurements, focusing on the impact of the radiative corrections and the effect of the various approaches for the treatment of the pion form factor. Our calculation is implemented in an updated version of the Monte Carlo event generator B<span>aba</span>Y<span>aga</span>@NLO, that can be used for fully exclusive simulations in data analysis.</p>","PeriodicalId":635,"journal":{"name":"Journal of High Energy Physics","volume":"2025 5","pages":""},"PeriodicalIF":5.4000,"publicationDate":"2025-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/JHEP05(2025)196.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of High Energy Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/JHEP05(2025)196","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Physics and Astronomy","Score":null,"Total":0}
引用次数: 0
Abstract
The pion pair production in e+e− annihilation at flavour factories plays a crucial role in the determination of the hadronic contribution to the muon anomalous magnetic moment. The recent CMD-3 measurement of the pion form factor via energy scan displays a significant difference with the previous experimental determinations. In order to contribute to an improved theoretical description and simulation of energy scan experiments, we present a calculation of the e+e− → π+π−(γ) hadronic channel at next-to-leading order matched to a Parton Shower algorithm in QED and sQED. According to the recent advances in the literature, particular attention is paid to the treatment of the pion composite structure in loop diagrams beyond the commonly used factorised sQED approach, as well as to the modelling of multiple photon radiation through the Parton Shower algorithm. In particular, we carry out a detailed discussion on the inclusion of the pion form factor in the virtual sQED corrections according to two independent methods, inspired by the generalised vector meson dominance model and the dispersive approach, respectively. We find the two methods to be in remarkable agreement. We show phenomenological results for inclusive and differential observables which are relevant for precision energy scan measurements, focusing on the impact of the radiative corrections and the effect of the various approaches for the treatment of the pion form factor. Our calculation is implemented in an updated version of the Monte Carlo event generator BabaYaga@NLO, that can be used for fully exclusive simulations in data analysis.
期刊介绍:
The aim of the Journal of High Energy Physics (JHEP) is to ensure fast and efficient online publication tools to the scientific community, while keeping that community in charge of every aspect of the peer-review and publication process in order to ensure the highest quality standards in the journal.
Consequently, the Advisory and Editorial Boards, composed of distinguished, active scientists in the field, jointly establish with the Scientific Director the journal''s scientific policy and ensure the scientific quality of accepted articles.
JHEP presently encompasses the following areas of theoretical and experimental physics:
Collider Physics
Underground and Large Array Physics
Quantum Field Theory
Gauge Field Theories
Symmetries
String and Brane Theory
General Relativity and Gravitation
Supersymmetry
Mathematical Methods of Physics
Mostly Solvable Models
Astroparticles
Statistical Field Theories
Mostly Weak Interactions
Mostly Strong Interactions
Quantum Field Theory (phenomenology)
Strings and Branes
Phenomenological Aspects of Supersymmetry
Mostly Strong Interactions (phenomenology).