Investigating the mechanism of formation of nitro-substituted nicotine analogue via the [3 + 2] cycloaddition reaction of (E)-substituted nitroethene derivatives and (Z)-C-(3-pyridyl)-N-aryl-nitrones: a density functional theory (DFT) study
{"title":"Investigating the mechanism of formation of nitro-substituted nicotine analogue via the [3 + 2] cycloaddition reaction of (E)-substituted nitroethene derivatives and (Z)-C-(3-pyridyl)-N-aryl-nitrones: a density functional theory (DFT) study","authors":"Oscar Adjei Boadi Appiah, Evans Adei, Richard Tia","doi":"10.1007/s11144-025-02800-8","DOIUrl":null,"url":null,"abstract":"<div><p>The formation of nitro-substituted nicotine analogues via the (3 + 2) cycloaddition (32CA) reaction between (E)-substituted nitroethene derivatives and (Z)-C-(3-pyridyl)-N-aryl-nitrones have been investigated using Density functional theory (DFT) at the B3LYP-D3/6-311G (d, p) level of theory. The results reveal that the reaction leads to the formation of the 4-nitro substituted <i>exo</i> isoxazolidine nicotine analogue (<b>P2A</b>). The rate constant for the preferred pathway (formation of <b>P2A</b>) in the reaction of <b>A1</b> and <b>A2</b> is 2.21 × 10<sup>10</sup> s<sup>−1</sup>, which is about 1.66 × 10<sup>2</sup> faster than the competing pathway through <b>TS1B</b> yielding product <b>P1B</b> with a rate constant of 4.23 × 10<sup>9</sup> s<sup>−1</sup>. Substituents on both <b>A1</b> and <b>A2</b> influence the activation barriers, with electron-withdrawing groups increasing the reaction’s electrophilicity and electron-donating groups increasing nucleophilicity. The calculated global reactivity indices support these trends, with <b>A1</b> acting as the electrophile and <b>A2</b> as the nucleophile.</p></div>","PeriodicalId":750,"journal":{"name":"Reaction Kinetics, Mechanisms and Catalysis","volume":"138 3","pages":"1903 - 1921"},"PeriodicalIF":1.7000,"publicationDate":"2025-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Reaction Kinetics, Mechanisms and Catalysis","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s11144-025-02800-8","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The formation of nitro-substituted nicotine analogues via the (3 + 2) cycloaddition (32CA) reaction between (E)-substituted nitroethene derivatives and (Z)-C-(3-pyridyl)-N-aryl-nitrones have been investigated using Density functional theory (DFT) at the B3LYP-D3/6-311G (d, p) level of theory. The results reveal that the reaction leads to the formation of the 4-nitro substituted exo isoxazolidine nicotine analogue (P2A). The rate constant for the preferred pathway (formation of P2A) in the reaction of A1 and A2 is 2.21 × 1010 s−1, which is about 1.66 × 102 faster than the competing pathway through TS1B yielding product P1B with a rate constant of 4.23 × 109 s−1. Substituents on both A1 and A2 influence the activation barriers, with electron-withdrawing groups increasing the reaction’s electrophilicity and electron-donating groups increasing nucleophilicity. The calculated global reactivity indices support these trends, with A1 acting as the electrophile and A2 as the nucleophile.
期刊介绍:
Reaction Kinetics, Mechanisms and Catalysis is a medium for original contributions in the following fields:
-kinetics of homogeneous reactions in gas, liquid and solid phase;
-Homogeneous catalysis;
-Heterogeneous catalysis;
-Adsorption in heterogeneous catalysis;
-Transport processes related to reaction kinetics and catalysis;
-Preparation and study of catalysts;
-Reactors and apparatus.
Reaction Kinetics, Mechanisms and Catalysis was formerly published under the title Reaction Kinetics and Catalysis Letters.