Investigation on thermal management of cylindrical lithium-ion batteries based on interwound cooling belt structure

IF 9.9 1区 工程技术 Q1 ENERGY & FUELS
Wenjie Qi , Jiaxing Yang , Zhigang Zhang , Jieyang Wu , Peng Lan , Shuangling Xiang
{"title":"Investigation on thermal management of cylindrical lithium-ion batteries based on interwound cooling belt structure","authors":"Wenjie Qi ,&nbsp;Jiaxing Yang ,&nbsp;Zhigang Zhang ,&nbsp;Jieyang Wu ,&nbsp;Peng Lan ,&nbsp;Shuangling Xiang","doi":"10.1016/j.enconman.2025.119962","DOIUrl":null,"url":null,"abstract":"<div><div>Battery thermal management is a major challenge for battery electric vehicles, with thermal runaway incidents sparking public safety concerns. Aiming to tackle the issues of excessive module temperature and inadequate thermal balance of vehicle power batteries under high discharge rates, a novel interwound cooling belt structure for cylindrical lithium-ion batteries based on the temperature distribution characteristics of battery modules is proposed. A comparative analysis of thermal–hydraulic performance across four cooling structures demonstrates that the proposed design exhibits superior efficacy in battery thermal management applications. The effect of cooling belt geometry on thermal management performance under fixed mass flow rates is systematically investigated. Thermal-hydraulic analysis demonstrates that a bifurcated cooling belt design with 24 mm (main) and 16 mm (branch) heights maximizes heat dissipation efficiency. Orthogonal test design is adopted to evaluate the influence of cooling channel geometry (heights), inlet coolant temperature, and mass flow rate on the thermal performance of the interwound cooling belt structure. Optimal configurations are determined through a balanced multi-parameter optimization approach. The optimized configuration exhibits superior thermal–hydraulic performance relative to the baseline, with maximum temperature (<em>T</em><sub>max</sub>) being 6.31 K lower, maximum temperature difference (Δ<em>T</em><sub>max</sub>) reduced by 0.18 K, and the pressure drop (Δ<em>P</em>) cut by 39.02 %.</div></div>","PeriodicalId":11664,"journal":{"name":"Energy Conversion and Management","volume":"340 ","pages":"Article 119962"},"PeriodicalIF":9.9000,"publicationDate":"2025-05-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy Conversion and Management","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0196890425004868","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

Battery thermal management is a major challenge for battery electric vehicles, with thermal runaway incidents sparking public safety concerns. Aiming to tackle the issues of excessive module temperature and inadequate thermal balance of vehicle power batteries under high discharge rates, a novel interwound cooling belt structure for cylindrical lithium-ion batteries based on the temperature distribution characteristics of battery modules is proposed. A comparative analysis of thermal–hydraulic performance across four cooling structures demonstrates that the proposed design exhibits superior efficacy in battery thermal management applications. The effect of cooling belt geometry on thermal management performance under fixed mass flow rates is systematically investigated. Thermal-hydraulic analysis demonstrates that a bifurcated cooling belt design with 24 mm (main) and 16 mm (branch) heights maximizes heat dissipation efficiency. Orthogonal test design is adopted to evaluate the influence of cooling channel geometry (heights), inlet coolant temperature, and mass flow rate on the thermal performance of the interwound cooling belt structure. Optimal configurations are determined through a balanced multi-parameter optimization approach. The optimized configuration exhibits superior thermal–hydraulic performance relative to the baseline, with maximum temperature (Tmax) being 6.31 K lower, maximum temperature difference (ΔTmax) reduced by 0.18 K, and the pressure drop (ΔP) cut by 39.02 %.
基于绕线冷却带结构的圆柱形锂离子电池热管理研究
电池热管理是纯电动汽车面临的主要挑战,热失控事件引发了公众对安全的担忧。针对车用动力电池在高放电倍率下组件温度过高和热平衡不充分的问题,基于电池组件温度分布特性,提出了一种新型的圆柱形锂离子电池绕线冷却带结构。四种冷却结构的热水力性能对比分析表明,所提出的设计在电池热管理应用中表现出卓越的效率。系统研究了固定质量流量下冷却带几何形状对热管理性能的影响。热水力分析表明,主冷带高度为24 mm,支冷带高度为16 mm的分岔冷带设计可获得最大的散热效率。采用正交试验设计,评价冷却通道几何形状(高度)、进口冷却剂温度、质量流量对缠绕冷却带结构热工性能的影响。通过平衡的多参数优化方法确定最优配置。优化后的结构与基线相比,最大温度(Tmax)降低了6.31 K,最大温差(ΔTmax)降低了0.18 K,压降(ΔP)降低了39.02%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Energy Conversion and Management
Energy Conversion and Management 工程技术-力学
CiteScore
19.00
自引率
11.50%
发文量
1304
审稿时长
17 days
期刊介绍: The journal Energy Conversion and Management provides a forum for publishing original contributions and comprehensive technical review articles of interdisciplinary and original research on all important energy topics. The topics considered include energy generation, utilization, conversion, storage, transmission, conservation, management and sustainability. These topics typically involve various types of energy such as mechanical, thermal, nuclear, chemical, electromagnetic, magnetic and electric. These energy types cover all known energy resources, including renewable resources (e.g., solar, bio, hydro, wind, geothermal and ocean energy), fossil fuels and nuclear resources.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信