Spatio-temporal distribution of microplastics in surface water of typical urban rivers in North China, risk assessment and influencing factors

IF 3.5 3区 环境科学与生态学 Q2 ENVIRONMENTAL SCIENCES
Kaiming Li , Ruixue Zhao , Xin Meng
{"title":"Spatio-temporal distribution of microplastics in surface water of typical urban rivers in North China, risk assessment and influencing factors","authors":"Kaiming Li ,&nbsp;Ruixue Zhao ,&nbsp;Xin Meng","doi":"10.1016/j.jconhyd.2025.104626","DOIUrl":null,"url":null,"abstract":"<div><div>Urban rivers serve as primary receivers and transporters of microplastics. In this study, the spatio-temporal distribution of microplastics in the surface waters of the Zhang River and Fuyang River, which are representative urban rivers in North China, was investigated. The risk evaluation and influencing factors were also analyzed. The results indicated that the average abundance of microplastics in the surface waters of the Zhang River was higher during the dry season, while the average abundance in the Fuyang River was lower than that observed in the Zhang River during the wet season. Furthermore, the abundance of microplastics exhibited an increasing trend from upstream to downstream. The predominant polymer types of microplastics identified are polyethylene (PE) and polypropylene (PP), with the majority being blue fibers 0–2 mm in size. In comparison to the Zhang River, the Fuyang River exhibits a higher diversity index of microplastics, with more varied and complex sources attributed to anthropogenic activities. The risk of microplastic pollution in the Zhang and Fuyang rivers was found to increase downstream. The spatial distribution of microplastics is influenced by both natural conditions and anthropogenic activities, with upstream areas dominated by natural factors and downstream areas dominated by human activities. This study provides a reference for understanding microplastic pollution levels and sources in urban rivers of Northern China.</div></div>","PeriodicalId":15530,"journal":{"name":"Journal of contaminant hydrology","volume":"273 ","pages":"Article 104626"},"PeriodicalIF":3.5000,"publicationDate":"2025-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of contaminant hydrology","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0169772225001317","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Urban rivers serve as primary receivers and transporters of microplastics. In this study, the spatio-temporal distribution of microplastics in the surface waters of the Zhang River and Fuyang River, which are representative urban rivers in North China, was investigated. The risk evaluation and influencing factors were also analyzed. The results indicated that the average abundance of microplastics in the surface waters of the Zhang River was higher during the dry season, while the average abundance in the Fuyang River was lower than that observed in the Zhang River during the wet season. Furthermore, the abundance of microplastics exhibited an increasing trend from upstream to downstream. The predominant polymer types of microplastics identified are polyethylene (PE) and polypropylene (PP), with the majority being blue fibers 0–2 mm in size. In comparison to the Zhang River, the Fuyang River exhibits a higher diversity index of microplastics, with more varied and complex sources attributed to anthropogenic activities. The risk of microplastic pollution in the Zhang and Fuyang rivers was found to increase downstream. The spatial distribution of microplastics is influenced by both natural conditions and anthropogenic activities, with upstream areas dominated by natural factors and downstream areas dominated by human activities. This study provides a reference for understanding microplastic pollution levels and sources in urban rivers of Northern China.
华北典型城市河流地表水中微塑料的时空分布、风险评价及影响因素
城市河流是微塑料的主要接受者和运输者。本研究以华北地区具有代表性的城市河流张河和阜阳河为研究对象,对其地表水中微塑料的时空分布进行了研究。对风险评价及影响因素进行了分析。结果表明,枯水期张河表层微塑料平均丰度较高,而丰水期富阳河表层微塑料平均丰度低于张河表层。微塑料丰度从上游到下游呈增加趋势。确定的微塑料的主要聚合物类型是聚乙烯(PE)和聚丙烯(PP),大多数是尺寸为0-2毫米的蓝色纤维。与张河相比,阜阳河微塑料多样性指数更高,人类活动来源更多样、更复杂。研究发现,张河和阜阳河下游的微塑料污染风险增加。微塑料的空间分布受自然条件和人为活动的双重影响,上游地区以自然因素为主,下游地区以人为活动为主。该研究为了解中国北方城市河流微塑料污染水平和来源提供了参考。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of contaminant hydrology
Journal of contaminant hydrology 环境科学-地球科学综合
CiteScore
6.80
自引率
2.80%
发文量
129
审稿时长
68 days
期刊介绍: The Journal of Contaminant Hydrology is an international journal publishing scientific articles pertaining to the contamination of subsurface water resources. Emphasis is placed on investigations of the physical, chemical, and biological processes influencing the behavior and fate of organic and inorganic contaminants in the unsaturated (vadose) and saturated (groundwater) zones, as well as at groundwater-surface water interfaces. The ecological impacts of contaminants transported both from and to aquifers are of interest. Articles on contamination of surface water only, without a link to groundwater, are out of the scope. Broad latitude is allowed in identifying contaminants of interest, and include legacy and emerging pollutants, nutrients, nanoparticles, pathogenic microorganisms (e.g., bacteria, viruses, protozoa), microplastics, and various constituents associated with energy production (e.g., methane, carbon dioxide, hydrogen sulfide). The journal''s scope embraces a wide range of topics including: experimental investigations of contaminant sorption, diffusion, transformation, volatilization and transport in the surface and subsurface; characterization of soil and aquifer properties only as they influence contaminant behavior; development and testing of mathematical models of contaminant behaviour; innovative techniques for restoration of contaminated sites; development of new tools or techniques for monitoring the extent of soil and groundwater contamination; transformation of contaminants in the hyporheic zone; effects of contaminants traversing the hyporheic zone on surface water and groundwater ecosystems; subsurface carbon sequestration and/or turnover; and migration of fluids associated with energy production into groundwater.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信