Enumerating several statistics of r-colored Dyck paths with no dd-steps having the same colors

IF 0.7 3区 数学 Q2 MATHEMATICS
Yidong Sun, Jinyi Wang, Xinyu Wang
{"title":"Enumerating several statistics of r-colored Dyck paths with no dd-steps having the same colors","authors":"Yidong Sun,&nbsp;Jinyi Wang,&nbsp;Xinyu Wang","doi":"10.1016/j.disc.2025.114597","DOIUrl":null,"url":null,"abstract":"<div><div>An <em>r</em>-colored Dyck path is a Dyck path with all <strong>d</strong>-steps having one of <em>r</em> colors in <span><math><mo>[</mo><mi>r</mi><mo>]</mo><mo>=</mo><mo>{</mo><mn>1</mn><mo>,</mo><mn>2</mn><mo>,</mo><mo>…</mo><mo>,</mo><mi>r</mi><mo>}</mo></math></span>. In this paper, we consider several statistics on the set <span><math><msubsup><mrow><mi>A</mi></mrow><mrow><mi>n</mi><mo>,</mo><mn>0</mn></mrow><mrow><mo>(</mo><mi>r</mi><mo>)</mo></mrow></msubsup></math></span> of <em>r</em>-colored Dyck paths of length 2<em>n</em> with no two consecutive <strong>d</strong>-steps having the same colors. Precisely, the paper studies the statistics “number of points” at level <em>ℓ</em>, “number of <strong>u</strong>-steps” at level <span><math><mi>ℓ</mi><mo>+</mo><mn>1</mn></math></span>, “number of peaks” at level <span><math><mi>ℓ</mi><mo>+</mo><mn>1</mn></math></span> and “number of <strong>udu</strong>-steps” on the set <span><math><msubsup><mrow><mi>A</mi></mrow><mrow><mi>n</mi><mo>,</mo><mn>0</mn></mrow><mrow><mo>(</mo><mi>r</mi><mo>)</mo></mrow></msubsup></math></span>. The counting formulas of the first three statistics are established by Riordan arrays related to <span><math><mi>S</mi><mo>(</mo><mi>a</mi><mo>,</mo><mi>b</mi><mo>;</mo><mi>x</mi><mo>)</mo></math></span>, the weighted generating function of <span><math><mo>(</mo><mi>a</mi><mo>,</mo><mi>b</mi><mo>)</mo></math></span>-Schröder paths. By a useful and surprising relations satisfied by <span><math><mi>S</mi><mo>(</mo><mi>a</mi><mo>,</mo><mi>b</mi><mo>;</mo><mi>x</mi><mo>)</mo></math></span>, several identities related to these counting formulas are also described.</div></div>","PeriodicalId":50572,"journal":{"name":"Discrete Mathematics","volume":"348 11","pages":"Article 114597"},"PeriodicalIF":0.7000,"publicationDate":"2025-05-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0012365X25002055","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

An r-colored Dyck path is a Dyck path with all d-steps having one of r colors in [r]={1,2,,r}. In this paper, we consider several statistics on the set An,0(r) of r-colored Dyck paths of length 2n with no two consecutive d-steps having the same colors. Precisely, the paper studies the statistics “number of points” at level , “number of u-steps” at level +1, “number of peaks” at level +1 and “number of udu-steps” on the set An,0(r). The counting formulas of the first three statistics are established by Riordan arrays related to S(a,b;x), the weighted generating function of (a,b)-Schröder paths. By a useful and surprising relations satisfied by S(a,b;x), several identities related to these counting formulas are also described.
列举几个r色Dyck路径的统计数据,没有相同颜色的dd步骤
r色Dyck路径是指所有d步都具有[r]={1,2,…,r}中r种颜色中的一种的Dyck路径。本文考虑了长度为2n的r色Dyck路径的集合An,0(r)上的几个统计量,其中没有两个连续的d步具有相同的颜色。具体地说,本文研究了集合An,0(r)上的“点数”、“u步数”、“峰数”和“udu步数”的统计量。前三个统计量的计数公式由(a,b)-Schröder路径的加权生成函数S(a,b;x)相关的Riordan数组建立。通过S(a,b;x)所满足的一个有用而令人惊奇的关系,我们还描述了与这些计数公式有关的几个恒等式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Discrete Mathematics
Discrete Mathematics 数学-数学
CiteScore
1.50
自引率
12.50%
发文量
424
审稿时长
6 months
期刊介绍: Discrete Mathematics provides a common forum for significant research in many areas of discrete mathematics and combinatorics. Among the fields covered by Discrete Mathematics are graph and hypergraph theory, enumeration, coding theory, block designs, the combinatorics of partially ordered sets, extremal set theory, matroid theory, algebraic combinatorics, discrete geometry, matrices, and discrete probability theory. Items in the journal include research articles (Contributions or Notes, depending on length) and survey/expository articles (Perspectives). Efforts are made to process the submission of Notes (short articles) quickly. The Perspectives section features expository articles accessible to a broad audience that cast new light or present unifying points of view on well-known or insufficiently-known topics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信