Chenhui Wang , Jianyang Zhang , Chen Li , Changbo Wang
{"title":"DC-APIC: A decomposed compatible affine particle in cell transfer scheme for non-sticky solid–fluid interactions in MPM","authors":"Chenhui Wang , Jianyang Zhang , Chen Li , Changbo Wang","doi":"10.1016/j.gmod.2025.101269","DOIUrl":null,"url":null,"abstract":"<div><div>Despite the material point method (MPM) provides a unified particle simulation framework for coupling of different materials, MPM suffers from sticky numerical artifacts, which is inherently restricted to sticky and no-slip interactions. In this paper, we propose a novel transfer scheme called Decomposed Compatible Affine Particle in Cell (DC-APIC) within the MPM framework for simulating the two-way coupled interaction between elastic solids and incompressible fluids under free-slip boundary conditions on a unified background grid. Firstly, we adopt particle-grid compatibility to describe the relationship between grid nodes and particles at the fluid–solid interface, which serves as the guideline for subsequent particle–grid–particle transfers. Then we develop a phase-field gradient method to track the compatibility and normal directions at the interface. Secondly, to facilitate automatic MPM collision resolution during solid–fluid coupling, in the proposed DC-APIC integrator, the tangential component will not be transferred between incompatible grid nodes to prevent velocity smoothing in another phase, while the normal component is transferred without limitations. Finally, our comprehensive results confirm that our approach effectively reduces diffusion and unphysical viscosity compared to traditional MPM.</div></div>","PeriodicalId":55083,"journal":{"name":"Graphical Models","volume":"139 ","pages":"Article 101269"},"PeriodicalIF":2.2000,"publicationDate":"2025-05-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Graphical Models","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1524070325000165","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
引用次数: 0
Abstract
Despite the material point method (MPM) provides a unified particle simulation framework for coupling of different materials, MPM suffers from sticky numerical artifacts, which is inherently restricted to sticky and no-slip interactions. In this paper, we propose a novel transfer scheme called Decomposed Compatible Affine Particle in Cell (DC-APIC) within the MPM framework for simulating the two-way coupled interaction between elastic solids and incompressible fluids under free-slip boundary conditions on a unified background grid. Firstly, we adopt particle-grid compatibility to describe the relationship between grid nodes and particles at the fluid–solid interface, which serves as the guideline for subsequent particle–grid–particle transfers. Then we develop a phase-field gradient method to track the compatibility and normal directions at the interface. Secondly, to facilitate automatic MPM collision resolution during solid–fluid coupling, in the proposed DC-APIC integrator, the tangential component will not be transferred between incompatible grid nodes to prevent velocity smoothing in another phase, while the normal component is transferred without limitations. Finally, our comprehensive results confirm that our approach effectively reduces diffusion and unphysical viscosity compared to traditional MPM.
期刊介绍:
Graphical Models is recognized internationally as a highly rated, top tier journal and is focused on the creation, geometric processing, animation, and visualization of graphical models and on their applications in engineering, science, culture, and entertainment. GMOD provides its readers with thoroughly reviewed and carefully selected papers that disseminate exciting innovations, that teach rigorous theoretical foundations, that propose robust and efficient solutions, or that describe ambitious systems or applications in a variety of topics.
We invite papers in five categories: research (contributions of novel theoretical or practical approaches or solutions), survey (opinionated views of the state-of-the-art and challenges in a specific topic), system (the architecture and implementation details of an innovative architecture for a complete system that supports model/animation design, acquisition, analysis, visualization?), application (description of a novel application of know techniques and evaluation of its impact), or lecture (an elegant and inspiring perspective on previously published results that clarifies them and teaches them in a new way).
GMOD offers its authors an accelerated review, feedback from experts in the field, immediate online publication of accepted papers, no restriction on color and length (when justified by the content) in the online version, and a broad promotion of published papers. A prestigious group of editors selected from among the premier international researchers in their fields oversees the review process.