{"title":"Enhanced stability of monolayers for quantum transport applications","authors":"Gyu Don Kong, Xin He, Peng He, Hyo Jae Yoon","doi":"10.1016/j.coelec.2025.101706","DOIUrl":null,"url":null,"abstract":"<div><div>Recent advances in self-assembled monolayers (SAMs) have overcome longstanding stability challenges, unlocking new opportunities for molecular-scale devices in quantum transport applications. This review highlights key developments focused on enhancing the electrical and thermal robustness of SAMs. The Repeated Surface Exchange of Molecules (ReSEM) method significantly improves breakdown voltages by mixing two molecular species to reduce packing defects and nanoscale pinholes, enabling access to deeper molecular orbital energy levels. Additionally, N-heterocyclic carbene (NHC) anchor groups deliver exceptional thermal stability, sustaining consistent thermoelectric performance at temperatures up to 573 K. These breakthroughs expand the functional versatility of SAM-based molecular junctions, paving the way for their integration into practical electronic, thermoelectric, and sensing technologies.</div></div>","PeriodicalId":11028,"journal":{"name":"Current Opinion in Electrochemistry","volume":"52 ","pages":"Article 101706"},"PeriodicalIF":7.9000,"publicationDate":"2025-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Opinion in Electrochemistry","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2451910325000651","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Recent advances in self-assembled monolayers (SAMs) have overcome longstanding stability challenges, unlocking new opportunities for molecular-scale devices in quantum transport applications. This review highlights key developments focused on enhancing the electrical and thermal robustness of SAMs. The Repeated Surface Exchange of Molecules (ReSEM) method significantly improves breakdown voltages by mixing two molecular species to reduce packing defects and nanoscale pinholes, enabling access to deeper molecular orbital energy levels. Additionally, N-heterocyclic carbene (NHC) anchor groups deliver exceptional thermal stability, sustaining consistent thermoelectric performance at temperatures up to 573 K. These breakthroughs expand the functional versatility of SAM-based molecular junctions, paving the way for their integration into practical electronic, thermoelectric, and sensing technologies.
期刊介绍:
The development of the Current Opinion journals stemmed from the acknowledgment of the growing challenge for specialists to stay abreast of the expanding volume of information within their field. In Current Opinion in Electrochemistry, they help the reader by providing in a systematic manner:
1.The views of experts on current advances in electrochemistry in a clear and readable form.
2.Evaluations of the most interesting papers, annotated by experts, from the great wealth of original publications.
In the realm of electrochemistry, the subject is divided into 12 themed sections, with each section undergoing an annual review cycle:
• Bioelectrochemistry • Electrocatalysis • Electrochemical Materials and Engineering • Energy Storage: Batteries and Supercapacitors • Energy Transformation • Environmental Electrochemistry • Fundamental & Theoretical Electrochemistry • Innovative Methods in Electrochemistry • Organic & Molecular Electrochemistry • Physical & Nano-Electrochemistry • Sensors & Bio-sensors •